Radical-Enhanced Charge Transport in Single-Molecule Phenothiazine Electrical Junctions
Dr. Junyang Liu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiaotao Zhao
Department of Chemistry, Durham University, Durham, DH1 3LE UK
These authors contributed equally to this work.
Search for more papers by this authorQusiy Al-Galiby
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
Department of Physics, College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Diwaniya city, 58002 Iraq
These authors contributed equally to this work.
Search for more papers by this authorXiaoyan Huang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJueting Zheng
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorRuihao Li
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Cancan Huang
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Yang Yang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Jia Shi
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. David Zsolt Manrique
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
Department of Electronic & Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
Search for more papers by this authorCorresponding Author
Prof. Colin J. Lambert
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
Search for more papers by this authorCorresponding Author
Prof. Martin R. Bryce
Department of Chemistry, Durham University, Durham, DH1 3LE UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Wenjing Hong
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Junyang Liu
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiaotao Zhao
Department of Chemistry, Durham University, Durham, DH1 3LE UK
These authors contributed equally to this work.
Search for more papers by this authorQusiy Al-Galiby
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
Department of Physics, College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Diwaniya city, 58002 Iraq
These authors contributed equally to this work.
Search for more papers by this authorXiaoyan Huang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJueting Zheng
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorRuihao Li
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Cancan Huang
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Yang Yang
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Jia Shi
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. David Zsolt Manrique
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
Department of Electronic & Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
Search for more papers by this authorCorresponding Author
Prof. Colin J. Lambert
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
Search for more papers by this authorCorresponding Author
Prof. Martin R. Bryce
Department of Chemistry, Durham University, Durham, DH1 3LE UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Wenjing Hong
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, iChEM, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorGraphical Abstract
Single-molecule conductances of phenothiazine radicals have been measured using the mechanically controllable break junction technique. Triggered by an acid oxidant, the radical cation of phenothiazine enhances the charge-transport property by up to 200 times with high stability and high junction formation probability at room temperature, which leads to promising applications in single-molecule electronics and spintronics.
Abstract
We studied the single-molecule conductance through an acid oxidant triggered phenothiazine (PTZ-) based radical junction using the mechanically controllable break junction technique. The electrical conductance of the radical state was enhanced by up to 200 times compared to the neutral state, with high stability lasting for at least two months and high junction formation probability at room-temperature. Theoretical studies revealed that the conductance increase is due to a significant decrease of the HOMO–LUMO gap and also the enhanced transmission close to the HOMO orbital when the radical forms. The large conductance enhancement induced by the formation of the stable PTZ radical molecule will lead to promising applications in single-molecule electronics and spintronics.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201707710-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Chem. Rev. 2016, 116, 4318–4440;
- 1bN. J. Tao, Nat. Nanotechnol. 2006, 1, 173–181;
- 1cC. Huang, A. V. Rudnev, W. Hong, T. Wandlowski, Chem. Soc. Rev. 2015, 44, 889–901;
- 1dT. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Nat. Rev. Mater. 2016, 1, 16002;
- 1eA. C. Aragonès, N. L. Haworth, N. Darwish, S. Ciampi, N. J. Bloomfield, G. G. Wallace, I. Diez-Perez, M. L. Coote, Nature 2016, 531, 88–91;
- 1fI. W. P. Chen, W.-H. Tseng, M.-W. Gu, L.-C. Su, C.-H. Hsu, W.-H. Chang, C.-h. Chen, Angew. Chem. Int. Ed. 2013, 52, 2449–2453; Angew. Chem. 2013, 125, 2509–2513.
- 2I. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303–349.
- 3
- 3aY.-h. Zhang, S. Kahle, T. Herden, C. Stroh, M. Mayor, U. Schlickum, M. Ternes, P. Wahl, K. Kern, Nat. Commun. 2013, 4, 2110;
- 3bR. Frisenda, R. Gaudenzi, C. Franco, M. Mas-Torrent, C. Rovira, J. Veciana, I. Alcon, S. T. Bromley, E. Burzurí, H. S. J. van der Zant, Nano Lett. 2015, 15, 3109–3114;
- 3cJ. Liu, H. Isshiki, K. Katoh, T. Morita, B. K. Breedlove, M. Yamashita, T. Komeda, J. Am. Chem. Soc. 2013, 135, 651–658;
- 3dR. Requist, S. Modesti, P. P. Baruselli, A. Smogunov, M. Fabrizio, E. Tosatti, Proc. Natl. Acad. Sci. USA 2014, 111, 69–74.
- 4J. P. Bergfield, G. C. Solomon, C. A. Stafford, M. A. Ratner, Nano Lett. 2011, 11, 2759–2764.
- 5
- 5aC. Simão, M. Mas-Torrent, N. Crivillers, V. Lloveras, J. M. Artés, P. Gorostiza, J. Veciana, C. Rovira, Nat. Chem. 2011, 3, 359–364;
- 5bR. Hayakawa, M. A. Karimi, J. Wolf, T. Huhn, M. S. Zöllner, C. Herrmann, E. Scheer, Nano Lett. 2016, 16, 4960–4967.
- 6L. Yuan, C. Franco, N. Crivillers, M. Mas-Torrent, L. Cao, C. S. S. Sangeeth, C. Rovira, J. Veciana, C. A. Nijhuis, Nat. Commun. 2016, 7, 12066.
- 7J. Karpinska, B. Starczewska, H. Puzanowska-Tarasiewicz, Anal. Sci. 1996, 12, 161–170.
- 8
- 8aJ. D. Bell, J. F. Blount, O. V. Briscoe, H. C. Freeman, Chem. Commun. 1968, 1656–1657;
- 8bT. Uchida, M. Ito, K. Kozawa, Bull. Chem. Soc. Jpn. 1983, 56, 577–582.
- 9
- 9aR. Y. Lai, X. Kong, S. A. Jenekhe, A. J. Bard, J. Am. Chem. Soc. 2003, 125, 12631–12639;
- 9bK. Wu, Y. Du, H. Tang, Z. Chen, T. Lian, J. Am. Chem. Soc. 2015, 137, 10224–10230;
- 9cR. S. Nobuyasu, Z. J. Ren, G. C. Griffiths, A. S. Batsanov, P. Data, S. K. Yan, A. P. Monkman, M. R. Bryce, F. B. Dias, Adv. Opt. Mater. 2016, 4, 597–607.
- 10
- 10aW. Hong, D. Z. Manrique, P. Moreno-García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292–2304;
- 10bD. Z. Manrique, C. Huang, M. Baghernejad, X. Zhao, O. A. Al-Owaedi, H. Sadeghi, V. Kaliginedi, W. Hong, M. Gulcur, T. Wandlowski, M. R. Bryce, C. J. Lambert, Nat. Commun. 2015, 6, 6389;
- 10cX. Liu, S. Sangtarash, D. Reber, D. Zhang, H. Sadeghi, J. Shi, Z.-Y. Xiao, W. Hong, C. J. Lambert, S.-X. Liu, Angew. Chem. Int. Ed. 2017, 56, 173–176; Angew. Chem. 2017, 129, 179–182;
- 10dC. Huang, M. Jevric, A. Borges, S. T. Olsen, J. M. Hamill, J.-T. Zheng, Y. Yang, A. Rudnev, M. Baghernejad, P. Broekmann, A. U. Petersen, T. Wandlowski, K. V. Mikkelsen, G. C. Solomon, M. Brøndsted Nielsen, W. Hong, Nat. Commun. 2017, 8, 15436.
- 11P. Moreno-García, M. Gulcur, D. Z. Manrique, T. Pope, W. Hong, V. Kaliginedi, C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2013, 135, 12228–12240.
- 12
- 12aD. Clarke, B. C. Gilbert, P. Hanson, C. M. Kirk, J. Chem. Soc. Perkin Trans. 2 1978, 1103–1110;
- 12bT. Okamoto, M. Kuratsu, M. Kozaki, K. Hirotsu, A. Ichimura, T. Matsushita, K. Okada, Org. Lett. 2004, 6, 3493–3496;
- 12cY. Gao, J. Chen, X. Zhuang, J. Wang, Y. Pan, L. Zhang, S. Yu, Chem. Phys. 2007, 334, 224–231;
- 12dH. J. Shine, E. E. Mach, J. Org. Chem. 1965, 30, 2130–2139.
- 13R. E. Hester, K. P. J. Williams, J. Chem. Soc. Perkin Trans. 2 1981, 852–859.
- 14
- 14aC. Lagercrantz, Acta Chem. Scand. 1961, 15, 1545–1556;
- 14bY. Soo Kang, J. A. Jung, L. Kevan, J. Chem. Soc. Faraday Trans. 1998, 94, 3247–3250;
- 14cF. L. Rupérez, J. C. Conesa, J. Soria, Spectrochim. Acta Part A 1984, 40, 1021–1024.
- 15W. Hong, H. Valkenier, G. Mészáros, D. Z. Manrique, A. Mishchenko, A. Putz, P. M. García, C. J. Lambert, J. C. Hummelen, T. Wandlowski, Beilstein J. Nanotechnol. 2011, 2, 699–713.
- 16
- 16aV. Fatemi, M. Kamenetska, J. B. Neaton, L. Venkataraman, Nano Lett. 2011, 11, 1988–1992;
- 16bB. Capozzi, J. Xia, O. Adak, E. J. Dell, Z.-F. Liu, J. C. Taylor, J. B. Neaton, L. M. Campos, L. Venkataraman, Nat. Nanotechnol. 2015, 10, 522–527.
- 17
- 17aV. Kaliginedi, P. Moreno-García, H. Valkenier, W. Hong, V. M. García-Suárez, P. Buiter, J. L. H. Otten, J. C. Hummelen, C. J. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 5262–5275;
- 17bR. Frisenda, S. Tarkuç, E. Galán, M. L. Perrin, R. Eelkema, F. C. Grozema, H. S. J. van der Zant, Beilstein J. Nanotechnol. 2015, 6, 1558–1567.
- 18K. Yoshida, I. V. Pobelov, D. Z. Manrique, T. Pope, G. Mészáros, M. Gulcur, M. R. Bryce, C. J. Lambert, T. Wandlowski, Sci. Rep. 2015, 5, 9002.
- 19
- 19aC. A. Martin, D. Ding, J. K. Sørensen, T. Bjørnholm, J. M. van Ruitenbeek, H. S. J. van der Zant, J. Am. Chem. Soc. 2008, 130, 13198–13199;
- 19bS. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, L. Venkataraman, Nat. Nanotechnol. 2009, 4, 230–234.
- 20
- 20aB. Gotsmann, H. Riel, E. Lörtscher, Phys. Rev. B 2011, 84, 205408;
- 20bR. Quan, C. S. Pitler, M. A. Ratner, M. G. Reuter, ACS Nano 2015, 9, 7704–7713.
- 21
- 21aC. Untiedt, A. Yanson, R. Grande, G. Rubio-Bollinger, N. Agraït, S. Vieira, J. M. van Ruitenbeek, Phys. Rev. B 2002, 66, 085418;
- 21bM. Kamenetska, S. Y. Quek, A. C. Whalley, M. L. Steigerwald, H. J. Choi, S. G. Louie, C. Nuckolls, M. S. Hybertsen, J. B. Neaton, L. Venkataraman, J. Am. Chem. Soc. 2010, 132, 6817–6821.
- 22D. Pan, D. L. Phillips, J. Phys. Chem. A 1999, 103, 4737–4743.
- 23
- 23aM. S. José, A. Emilio, D. G. Julian, G. Alberto, J. Javier, O. Pablo, S.-P. Daniel, J. Phys. Condens. Matter 2002, 14, 2745;
- 23bA. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, S. Sanvito, Nat. Mater. 2005, 4, 335–339.
- 24J. Ferrer, C. J. Lambert, V. M. García-Suárez, D. Z. Manrique, D. Visontai, L. Oroszlany, R. Rodríguez-Ferradás, I. Grace, S. W. D. Bailey, K. Gillemot, S. Hatef, L. A. Algharagholy, New J. Phys. 2014, 16, 093029.
- 25S. Ho Choi, B. Kim, C. D. Frisbie, Science 2008, 320, 1482–1486.
- 26
- 26aH. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, T. Lee, Nature 2009, 462, 1039–1043;
- 26bP. Reddy, S.-Y. Jang, R. A. Segalman, A. Majumdar, Science 2007, 315, 1568–1571.
- 27
- 27aC. J. Lambert, Chem. Soc. Rev. 2015, 44, 875–888;
- 27bR. Frisenda, V. A. E. C. Janssen, F. C. Grozema, H. S. J. van der Zant, N. Renaud, Nat. Chem. 2016, 8, 1099–1104;
- 27cA. Mishchenko, L. A. Zotti, D. Vonlanthen, M. Bürkle, F. Pauly, J. C. Cuevas, M. Mayor, T. Wandlowski, J. Am. Chem. Soc. 2011, 133, 184–187;
- 27dG. Kastlunger, R. Stadler, Phys. Rev. B 2013, 88, 035418.