Single-Atom Electrocatalysts
Dr. Chengzhou Zhu
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorShaofang Fu
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorQiurong Shi
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorDr. Dan Du
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yuehe Lin
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorDr. Chengzhou Zhu
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorShaofang Fu
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorQiurong Shi
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorDr. Dan Du
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yuehe Lin
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorGraphical Abstract
When less is more: Single-atom electrocatalysts are characterized by high catalytic activity, selectivity, and maximum metal utilization. They hold great promise in various electrochemical applications, such as the oxygen reduction reaction, the hydrogen evolution reaction, and hydrocarbon conversion reactions for fuel cells.
Abstract
Recent years have witnessed a dramatic increase in the production of sustainable and renewable energy. However, the electrochemical performances of the various systems are limited, and there is an intensive search for highly efficient electrocatalysts by more rational control over the size, shape, composition, and structure. Of particular interest are the studies on single-atom catalysts (SACs), which have sparked new interests in electrocatalysis because of their high catalytic activity, stability, selectivity, and 100 % atom utilization. In this Review, we introduce innovative syntheses and characterization techniques for SACs, with a focus on their electrochemical applications in the oxygen reduction/evolution reaction, hydrogen evolution reaction, and hydrocarbon conversion reactions for fuel cells (electrooxidation of methanol, ethanol, and formic acid). The electrocatalytic performance is further considered at an atomic level and the underlying mechanisms are discussed. The ultimate goal is the tailoring of single atoms for electrochemical applications.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. K. Debe, Nature 2012, 486, 43–51.
- 2B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. G. de Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, E. H. Sargent, Science 2016, 352, 333.
- 3I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem. 2017, 1, 0003.
- 4S. Gao, X. C. Jiao, Z. T. Sun, W. H. Zhang, Y. F. Sun, C. M. Wang, Q. T. Hu, X. L. Zu, F. Yang, S. Y. Yang, L. Liang, J. Wu, Y. Xie, Angew. Chem. Int. Ed. 2016, 55, 698–702; Angew. Chem. 2016, 128, 708–712.
- 5C. Zhu, S. Guo, S. Dong, Adv. Mater. 2012, 24, 2326–2331.
- 6F. Yang, D. H. Deng, X. L. Pan, Q. Fu, X. H. Bao, Natl. Sci. Rev. 2015, 2, 183–201.
- 7S. Guo, S. Sun, J. Am. Chem. Soc. 2012, 134, 2492–2495.
- 8B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Science 2009, 324, 1302–1305.
- 9E. C. Tyo, S. Vajda, Nat. Nanotechnol. 2015, 10, 577–588.
- 10H. Yin, H. Tang, D. Wang, Y. Gao, Z. Tang, ACS Nano 2012, 6, 8288–8297.
- 11Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, R. J. Meyer, P. C. Redfern, D. Teschner, R. Schlögl, M. J. Pellin, L. A. Curtiss, S. Vajda, Science 2010, 328, 224–228.
- 12W. Chen, S. Chen, Angew. Chem. Int. Ed. 2009, 48, 4386–4389; Angew. Chem. 2009, 121, 4450–4453.
- 13E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 2009, 9, 2255–2259.
- 14B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634–641.
- 15X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748.
- 16J. Lin, A. Q. Wang, B. T. Qiao, X. Y. Liu, X. F. Yang, X. D. Wang, J. X. Liang, J. X. Li, J. Y. Liu, T. Zhang, J. Am. Chem. Soc. 2013, 135, 15314–15317.
- 17J.-X. Liang, X.-F. Yang, A. Wang, T. Zhang, J. Li, Catal. Sci. Technol. 2016, 6, 6886–6892.
- 18M. Moses-DeBusk, M. Yoon, L. F. Allard, D. R. Mullins, Z. Wu, X. Yang, G. Veith, G. M. Stocks, C. K. Narula, J. Am. Chem. Soc. 2013, 135, 12634–12645.
- 19X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427–2431.
- 20G. Gao, Y. Jiao, E. R. Waclawik, A. Du, J. Am. Chem. Soc. 2016, 138, 6292–6297.
- 21G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N. López, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2015, 54, 11265–11269; Angew. Chem. 2015, 127, 11417–11422.
- 22X.-K. Gu, B. Qiao, C.-Q. Huang, W.-C. Ding, K. Sun, E. Zhan, T. Zhang, J. Liu, W.-X. Li, ACS Catal. 2014, 4, 3886–3890.
- 23G. Liu, A. W. Robertson, M. M.-J. Li, W. C. H. Kuo, M. T. Darby, M. H. Muhieddine, Y.-C. Lin, K. Suenaga, M. Stamatakis, J. H. Warner, S. C. E. Tsang, Nat. Chem. 2017, 9, 810—816.
- 24H. Fei, J. Dong, M. J. Arellano-Jiménez, G. Ye, N. D. Kim, E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour, Nat. Commun. 2015, 6, 8668.
- 25J. M. Thomas, Nature 2015, 525, 325–326.
- 26L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Nature 2017, 544, 80–83.
- 27J. Liu, ACS Catal. 2016, 34–59.
- 28S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M. N. Banis, R. Li, S. Ye, S. Knights, G. A. Botton, T.-K. Sham, X. Sun, Sci. Rep. 2013, 3, 1775.
- 29X. Zhang, J. Guo, P. Guan, C. Liu, H. Huang, F. Xue, X. Dong, S. J. Pennycook, M. F. Chisholm, Nat. Commun. 2013, 4, 1924.
- 30J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Energy Environ. Sci. 2015, 8, 1594–1601.
- 31C. K. Poh, S. H. Lim, J. Lin, Y. P. Feng, J. Phys. Chem. C 2014, 118, 13525–13538.
- 32Z. Zhang, X. Gao, M. Dou, J. Ji, F. Wang, Small 2017, 13, 1604290.
- 33B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.-Z. Qiao, Small 2017, 13, 1700191.
- 34R.-Q. Zhang, T.-H. Lee, B.-D. Yu, C. Stampfl, A. Soon, Phys. Chem. Chem. Phys. 2012, 14, 16552–16557.
- 35S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, Angew. Chem. Int. Ed. 2016, 55, 2058–2062; Angew. Chem. 2016, 128, 2098–2102.
- 36S. Liang, C. Hao, Y. Shi, ChemCatChem 2015, 7, 2559–2567.
- 37W. Zhang, W. Zheng, Adv. Funct. Mater. 2016, 26, 2988–2993.
- 38L. Zhang, W. Niu, G. Xu, Nano Today 2012, 7, 586–605.
- 39C. Zhu, Q. Shi, S. Fu, J. Song, H. Xia, D. Du, Y. Lin, Adv. Mater. 2016, 28, 8779–8783.
- 40C. Zhu, D. Du, A. Eychmüller, Y. Lin, Chem. Rev. 2015, 115, 8896–8943.
- 41S. Guo, S. Zhang, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 8526–8544; Angew. Chem. 2013, 125, 8686–8705.
- 42H. Mistry, A. S. Varela, S. Kühl, P. Strasser, B. R. Cuenya, Nat. Rev. Mater. 2016, 1, 16009.
- 43C. Li, T. Sato, Y. Yamauchi, Angew. Chem. Int. Ed. 2013, 52, 8050–8053; Angew. Chem. 2013, 125, 8208–8211.
- 44Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad 4998.
- 45D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater. 2013, 12, 81–87.
- 46S.-I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H.-C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, Y. Xia, Nano Lett. 2013, 13, 3420–3425.
- 47C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339–1343.
- 48L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su, X. Huang, Science 2016, 354, 1410–1414.
- 49X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, Science 2015, 348, 1230–1234.
- 50K. Jiang, D. Zhao, S. Guo, X. Zhang, X. Zhu, J. Guo, G. Lu, X. Huang, Sci. Adv. 2017, 3, e 1601705.
- 51M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen, R. Yu, Q. Zhang, L. Gu, B. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard, Y. Huang, X. Duan, Science 2016, 354, 1414–1419.
- 52M. Escudero-Escribano, P. Malacrida, M. H. Hansen, U. G. Vej-Hansen, A. Velázquez-Palenzuela, V. Tripkovic, J. Schiøtz, J. Rossmeisl, I. E. L. Stephens, I. Chorkendorff, Science 2016, 352, 73–76.
- 53Y.-J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, H. Wang, Chem. Rev. 2015, 115, 3433–3467.
- 54M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594–3657.
- 55K. Yamamoto, T. Imaoka, W.-J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Nat. Chem. 2009, 1, 397–402.
- 56T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, K. Yamamoto, J. Am. Chem. Soc. 2013, 135, 13089–13095.
- 57V. R. Chitturi, M. Ara, W. Fawaz, K. Y. S. Ng, L. M. R. Arava, ACS Catal. 2016, 6, 7088–7097.
- 58M. Yang, L. F. Allard, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc. 2013, 135, 3768–3771.
- 59M. Flytzani-Stephanopoulos, Acc. Chem. Res. 2014, 47, 783–792.
- 60Y. Jin, P. Hao, J. Ren, Z. Li, Prog. Chem. 2015, 27, 1689–1704.
- 61C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H.-T. Kim, K. J. J. Mayrhofer, H. Kim, M. Choi, Nat. Commun. 2016, 7, 10922.
- 62S. Liu, S. Huang, Carbon 2017, 115, 11–17.
- 63A. Bruix, Y. Lykhach, I. Matolínová, A. Neitzel, T. Skála, N. Tsud, M. Vorokhta, V. Stetsovych, K. Ševčíková, J. Mysliveček, R. Fiala, M. Václavů, K. C. Prince, S. Bruyère, V. Potin, F. Illas, V. Matolín, J. Libuda, K. M. Neyman, Angew. Chem. Int. Ed. 2014, 53, 10525–10530; Angew. Chem. 2014, 126, 10693–10698.
- 64J. Lin, B. Qiao, J. Liu, Y. Huang, A. Wang, L. Li, W. Zhang, L. F. Allard, X. Wang, T. Zhang, Angew. Chem. Int. Ed. 2012, 51, 2920–2924; Angew. Chem. 2012, 124, 2974–2978.
- 65Y. Tang, S. Zhao, B. Long, J.-C. Liu, J. Li, J. Phys. Chem. C 2016, 120, 17514–17526.
- 66S. Yang, Y. J. Tak, J. Kim, A. Soon, H. Lee, ACS Catal. 2016, 1301–1307.
- 67S. Yang, H. Lee, ACS Catal. 2013, 3, 437–443.
- 68Y.-T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani, Angew. Chem. Int. Ed. 2006, 45, 407–411; Angew. Chem. 2006, 118, 421–425.
- 69G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science 2012, 335, 1209–1212.
- 70S. Stambula, N. Gauquelin, M. Bugnet, S. Gorantla, S. Turner, S. Sun, J. Liu, G. Zhang, X. Sun, G. A. Botton, J. Phys. Chem. C 2014, 118, 3890–3900.
- 71N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, G. A. Botton, X. Sun, Nat. Commun. 2016, 7, 13638.
- 72U. Heiz, A. Sanchez, S. Abbet, W. D. Schneider, J. Am. Chem. Soc. 1999, 121, 3214–3217.
- 73S. Abbet, A. Sanchez, U. Heiz, W. D. Schneider, A. M. Ferrari, G. Pacchioni, N. Rösch, J. Am. Chem. Soc. 2000, 122, 3453–3457.
- 74B. J. O'Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, G. W. Huber, ACS Catal. 2015, 5, 1804–1825.
- 75H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. Wang, J. Li, S. Wei, J. Lu, J. Am. Chem. Soc. 2015, 137, 10484–10487.
- 76H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S. Miao, J. Liu, T. Zhang, Nat. Commun. 2014, 5, 5634.
- 77J. H. Kwak, L. Kovarik, J. Szanyi, ACS Catal. 2013, 3, 2094–2100.
- 78S. F. J. Hackett, R. M. Brydson, M. H. Gass, I. Harvey, A. D. Newman, K. Wilson, A. F. Lee, Angew. Chem. Int. Ed. 2007, 46, 8593–8596; Angew. Chem. 2007, 119, 8747–8750.
- 79B. Qiao, J. Liu, Y.-G. Wang, Q. Lin, X. Liu, A. Wang, J. Li, T. Zhang, J. Liu, ACS Catal. 2015, 5, 6249–6254.
- 80P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016, 352, 797–800.
- 81Z. Huang, X. Gu, Q. Cao, P. Hu, J. Hao, J. Li, X. Tang, Angew. Chem. Int. Ed. 2012, 51, 4198–4203; Angew. Chem. 2012, 124, 4274–4279.
- 82H. Zhang, K. Kawashima, M. Okumura, N. Toshima, J. Mater. Chem. A 2014, 2, 13498–13508.
- 83J. Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa, G. Qi, S. Oh, M. H. Wiebenga, X. I. P. Hernández, Y. Wang, A. K. Datye, Science 2016, 353, 150–154.
- 84W. Liu, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, Chem. Sci. 2016, 7, 5758–5764.
- 85S. Wang, L. Shang, L. Li, Y. Yu, C. Chi, K. Wang, J. Zhang, R. Shi, H. Shen, G. I. N. Waterhouse, S. Liu, J. Tian, T. Zhang, H. Liu, Adv. Mater. 2016, 28, 8379–8387.
- 86P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 10800–10805; Angew. Chem. 2016, 128, 10958–10963.
- 87C. Zhu, S. Fu, J. Song, Q. Shi, D. Su, M. H. Engelhard, X. Li, D. Xiao, D. Li, L. Estevez, D. Du, Y. Lin, Small 2017, 13, 1603407.
- 88J. Ge, D. He, W. Chen, H. Ju, H. Zhang, T. Chao, X. Wang, R. You, Y. Lin, Y. Wang, J. Zhu, H. Li, B. Xiao, W. Huang, Y. Wu, X. Hong, Y. Li, J. Am. Chem. Soc. 2016, 138, 13850–13853.
- 89X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Science 2014, 344, 616–619.
- 90J. Zhao, Q. Deng, S. M. Avdoshenko, L. Fu, J. Eckert, M. H. Rümmeli, Proc. Natl. Acad. Sci. USA 2014, 111, 15641–15646.
- 91T.-Y. Chang, Y. Tanaka, R. Ishikawa, K. Toyoura, K. Matsunaga, Y. Ikuhara, N. Shibata, Nano Lett. 2014, 14, 134–138.
- 92D. Deng, X. Chen, L. Yu, X. Wu, Q. Liu, Y. Liu, H. Yang, H. Tian, Y. Hu, P. Du, R. Si, J. Wang, X. Cui, H. Li, J. Xiao, T. Xu, J. Deng, F. Yang, P. N. Duchesne, P. Zhang, J. Zhou, L. Sun, J. Li, X. Pan, X. Bao, Sci. Adv. 2015, 1, e 1500462.
- 93J. Liu, F. R. Lucci, M. Yang, S. Lee, M. D. Marcinkowski, A. J. Therrien, C. T. Williams, E. C. H. Sykes, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc. 2016, 138, 6396–6399.
- 94R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2017, 139, 4486–4492.
- 95G. Malta, S. A. Kondrat, S. J. Freakley, C. J. Davies, L. Lu, S. Dawson, A. Thetford, E. K. Gibson, D. J. Morgan, W. Jones, P. P. Wells, P. Johnston, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, Science 2017, 355, 1399–1403.
- 96G. X. Pei, X. Y. Liu, A. Wang, A. F. Lee, M. A. Isaacs, L. Li, X. Pan, X. Yang, X. Wang, Z. Tai, K. Wilson, T. Zhang, ACS Catal. 2015, 5, 3717–3725.
- 97L. Zhang, A. Wang, J. T. Miller, X. Liu, X. Yang, W. Wang, L. Li, Y. Huang, C.-Y. Mou, T. Zhang, ACS Catal. 2014, 4, 1546–1553.
- 98R. Liu, L.-Q. Zhang, C. Yu, M.-T. Sun, J.-F. Liu, G.-B. Jiang, Adv. Mater. 2016, 1604571.
- 99R. Kou, Y. Y. Shao, D. H. Mei, Z. M. Nie, D. H. Wang, C. M. Wang, V. V. Viswanathan, S. Park, I. A. Aksay, Y. H. Lin, Y. Wang, J. Liu, J. Am. Chem. Soc. 2011, 133, 2541–2547.
- 100S. Fu, C. Zhu, J. Song, M. H. Engelhard, Y. He, D. Du, C. Wang, Y. Lin, J. Mater. Chem. A 2016, 4, 8755–8761.
- 101C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chem. Soc. Rev. 2016, 45, 517–531.
- 102W. Wang, F. Lv, B. Lei, S. Wan, M. C. Luo, S. J. Guo, Adv. Mater. 2016, 28, 10117–10141.
- 103K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760–764.
- 104S. Fu, C. Zhu, J. Song, D. Du, Y. Lin, Adv. Energy Mater. 2017, DOI: https://doi.org/10.1002/aenm.201700363.
- 105J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 2011, 133, 19432–19441.
- 106S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L. Stephens, J. Rossmeisl, Nat. Mater. 2013, 12, 1137–1143.
- 107C. H. Choi, H. C. Kwon, S. Yook, H. Shin, H. Kim, M. Choi, J. Phys. Chem. C 2014, 118, 30063–30070.
- 108G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878–1889.
- 109G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443–447.
- 110A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937–942.
- 111W. Orellana, J. Phys. Chem. C 2013, 117, 9812–9818.
- 112H.-W. Liang, W. Wei, Z.-S. Wu, X. Feng, K. Muellen, J. Am. Chem. Soc. 2013, 135, 16002–16005.
- 113W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J. Wan, J. Am. Chem. Soc. 2016, 138, 3570–3578.
- 114B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006.
- 115X. Chen, L. Yu, S. Wang, D. Deng, X. Bao, Nano Energy 2017, 32, 353–358.
- 116Q.-L. Zhu, W. Xia, L.-R. Zheng, R. Zou, Z. Liu, Q. Xu, ACS Energy Lett. 2017, 2, 504–511.
- 117B. Wang, X. Wang, J. Zou, Y. Yan, S. Xie, G. Hu, Y. Li, A. Dong, Nano Lett. 2017, 17, 2003—2009.
- 118P. Song, Y. Wang, J. Pan, W. Xu, L. Zhuang, J. Power Sources 2015, 300, 279–284.
- 119H. Shen, E. Gracia-Espino, J. Ma, H. Tang, X. Mamat, T. Wagberg, G. Hu, S. Guo, Nano Energy 2017, 35, 9–16.
- 120Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 6937—6941; Angew. Chem. 2017, 129, 7041—7045.
- 121M. Vázquez-González, W.-C. Liao, R. Cazelles, S. Wang, X. Yu, V. Gutkin, I. Willner, ACS Nano 2017, 11, 3247–3253.
- 122S. Liu, Y. Dong, Z. Wang, H. Huang, Z. Zhao, J. Qiu, J. Mater. Chem. A 2015, 3, 19657–19661.
- 123Q. Liu, J. Zhang, Langmuir 2013, 29, 3821–3828.
- 124J. Jin, X. Fu, Q. Liu, J. Zhang, J. Mater. Chem. A 2013, 1, 10538–10545.
- 125Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L. H. Li, Y. Han, Y. Chen, S.-Z. Qiao, J. Am. Chem. Soc. 2017, 139, 3336–3339.
- 126X. X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148–5180.
- 127X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Nat. Commun. 2013, 4, 1444.
- 128P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao, X. Huang, Nat. Commun. 2017, 8, 14580.
- 129A. B. Laursen, K. R. Patraju, M. J. Whitaker, M. Retuerto, T. Sarkar, N. Yao, K. V. Ramanujachary, M. Greenblatt, G. C. Dismukes, Energy Environ. Sci. 2015, 8, 1027–1034.
- 130M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E. I. Kauppinen, T. Kallio, K. Laasonen, ACS Catal. 2017, 7, 3121–3130.
- 131S. T. Hunt, M. Milina, Z. Wang, Y. Roman-Leshkov, Energy Environ. Sci. 2016, 9, 3290–3301.
- 132L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, X. Yao, Nat. Commun. 2016, 7, 10667.
- 133H. J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 2015, 54, 14031–14035; Angew. Chem. 2015, 127, 14237–14241.
- 134J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963–969.
- 135T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100–102.
- 136J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater. 2013, 25, 5807–5813.
- 137J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, ACS Catal. 2012, 2, 1916–1923.
- 138N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337–365.
- 139J. Song, C. Zhu, B. Z. Xu, S. Fu, M. H. Engelhard, R. Ye, D. Du, S. P. Beckman, Y. Lin, Adv. Energy Mater. 2017, 7, 1601555.
- 140S. Fu, C. Zhu, J. Song, M. H. Engelhard, X. Li, D. Du, Y. Lin, ACS Energy Lett. 2016, 1, 792–796.
- 141X. Li, P. Cui, W. Zhong, J. Li, X. Wang, Z. Wang, J. Jiang, Chem. Commun. 2016, 52, 13233–13236.
- 142F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226–10231.
- 143J. Song, C. Zhu, S. Fu, Y. Song, D. Du, Y. Lin, J. Mater. Chem. A 2016, 4, 4864–4870.
- 144P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2016, 55, 610–614; Angew. Chem. 2016, 129, 625–629.
- 145H. S. Ahn, J. Yano, T. D. Tilley, Energy Environ. Sci. 2013, 6, 3080–3087.
- 146H. S. Ahn, J. Yano, T. D. Tilley, ACS Catal. 2015, 5, 2573–2576.
- 147C. A. Kent, J. J. Concepcion, C. J. Dares, D. A. Torelli, A. J. Rieth, A. S. Miller, P. G. Hoertz, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 8432–8435.
- 148X. Yu, P. G. Pickup, J. Power Sources 2008, 182, 124–132.
- 149S. Zhang, Y. Shao, G. Yin, Y. Lin, Angew. Chem. Int. Ed. 2010, 49, 2211–2214; Angew. Chem. 2010, 122, 2257–2260.
- 150Z. Xi, D. P. Erdosy, A. Mendoza-Garcia, P. N. Duchesne, J. Li, M. Muzzio, Q. Li, P. Zhang, S. Sun, Nano Lett. 2017, 17, 2727–2731.
- 151Y. Kang, L. Qi, M. Li, R. E. Diaz, D. Su, R. R. Adzic, E. Stach, J. Li, C. B. Murray, ACS Nano 2012, 6, 2818–2825.
- 152Q.-S. Chen, Z.-Y. Zhou, F. J. Vidal-Iglesias, J. Solla-Gullón, J. M. Feliu, S.-G. Sun, J. Am. Chem. Soc. 2011, 133, 12930–12933.
- 153M. Neurock, M. Janik, A. Wieckowski, Faraday Discuss. 2009, 140, 363–378.
- 154R. Wang, J. Liu, P. Liu, X. Bi, X. Yan, W. Wang, X. Ge, M. Chen, Y. Ding, Chem. Sci. 2014, 5, 403–409.
- 155R. Wang, C. Wang, W.-B. Cai, Y. Ding, Adv. Mater. 2010, 22, 1845–1848.
- 156A. Cuesta, J. Am. Chem. Soc. 2006, 128, 13332–13333.
- 157E. Antolini, J. Power Sources 2007, 170, 1–12.
- 158C. Bianchini, P. K. Shen, Chem. Rev. 2009, 109, 4183–4206.
- 159S. Fu, C. Zhu, D. Du, Y. Lin, ACS Appl. Mater. Interfaces 2015, 7, 13842–13848.
- 160J. Perez, V. A. Paganin, E. Antolini, J. Electroanal. Chem. 2011, 654, 108–115.
- 161Y. W. Tang, G.-X. Ma, Y.-M. Zhou, J.-C. Bao, L.-D. Lu, T.-H. Lu, Acta Phys. Chim. Sin. 2008, 24, 1615–1619.
- 162A. von Weber, E. T. Baxter, S. Proch, M. D. Kane, M. Rosenfelder, H. S. White, S. L. Anderson, Phys. Chem. Chem. Phys. 2015, 17, 17601–17610.
- 163Y. Shi, C. Zhao, H. Wei, J. Guo, S. Liang, A. Wang, T. Zhang, J. Liu, T. Ma, Adv. Mater. 2014, 26, 8147–8153.
- 164S. Back, J. Lim, N.-Y. Kim, Y.-H. Kim, Y. Jung, Chem. Sci. 2017, 8, 1090–1096.
- 165S. Back, Y. Jung, ACS Energy Lett. 2017, 2, 969–975.
Citing Literature
November 6, 2017
Pages 13944-13960