Water Entrapped inside Fullerene Cages: A Potential Probe for Evaluation of Bond Polarization
Yoshifumi Hashikawa
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorDr. Michihisa Murata
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorProf. Dr. Atsushi Wakamiya
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yasujiro Murata
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorYoshifumi Hashikawa
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorDr. Michihisa Murata
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorProf. Dr. Atsushi Wakamiya
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yasujiro Murata
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorGraphical Abstract
It's a trap: Bond polarization is a useful parameter for understanding and considering reaction mechanisms and products. C−X bonds on the C60 cage affect the electrostatic environment inside the cage, resulting in changes in dynamic behavior of entrapped H2O. This difference can be detected by 1H NMR relaxation times of entrapped H2O, which correlate with the degree of bond polarization.
Abstract
The concept of the bond polarization is a useful tool to understand chemical reactions and fundamental properties of compounds. However, experimental considerations are limited owing to its difficulty of reliable description. We demonstrated that geometrically isolated H2O inside the cage of fullerene C60 is a possible probe to evaluate the polarization degree of covalent bonds C(C60)−X (X=heteroatom) on the C60 cage. The 1H NMR relaxation times of entrapped H2O have been systematically measured at variable temperatures for H2O@C60X (X=CR2, NR, O, and O2). The results followed in the order of electronegativities of C (2.55), N (3.04), and O (3.44), indicating that entrapped H2O can sensitively respond to the degree of the bond polarization.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201607040-sup-0001-misc_information.pdf4.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. K. Chattaraj, B. Maiti, U. Sarkar, J. Phys. Chem. A 2003, 107, 4973–4975;
- 1bN. Islam, D. C. Ghosh, Int. J. Mol. Sci. 2012, 13, 2160–2175.
- 2P. K. Chattaraj, U. Sarkar, D. R. Roy, Chem. Rev. 2006, 106, 2065–2091.
- 3L. R. Murphy, T. L. Meek, A. L. Allred, L. C. Allen, J. Phys. Chem. A 2000, 104, 5867–5871.
- 4
- 4aL. Pauling, J. Am. Chem. Soc. 1932, 54, 3570–3582;
- 4bL. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, 1960.
- 5C. K. Ingold, Chem. Rev. 1934, 15, 225–274.
- 6
- 6aR. S. Mulliken, J. Chem. Phys. 1934, 2, 782–793;
- 6bR. S. Mulliken, J. Chem. Phys. 1935, 3, 573–585;
- 6cW. Gordy, Phys. Rev. 1946, 69, 604–607;
- 6dA. L. Allred, E. G. Rochow, J. Inorg. Nucl. Chem. 1958, 5, 264–268;
- 6eA. L. Allred, J. Inorg. Nucl. Chem. 1961, 17, 215–221;
- 6fR. T. Sanderson, J. Am. Chem. Soc. 1983, 105, 2259–2261;
- 6gJ. Mullay, J. Am. Chem. Soc. 1985, 107, 7271–7275;
- 6hR. G. Pearson, Inorg. Chem. 1988, 27, 734–740;
- 6iL. C. Allen, J. Am. Chem. Soc. 1989, 111, 9003–9014;
- 6jT. Chakraborty, D. C. Ghosh, Eur. Phys. J. D 2010, 59, 183–192;
- 6kP. Politzer, Z. P.-I. Shields, F. A. Bulat, J. S. Murray, J. Chem. Theory Comput. 2011, 7, 377–384;
- 6lK. Wittmaack, Anal. Chem. 2014, 86, 5962–5968.
- 7
- 7aW. Gordy, Phys. Rev. 1946, 69, 130–131;
- 7bR. K. Boggess, J. Chem. Educ. 1988, 65, 819–820;
- 7cJ. K. Nagle, J. Am. Chem. Soc. 1990, 112, 4741–4747;
- 7dA. Stirling, A. Pasquarello, J. Phys. Chem. A 2005, 109, 8385–8390;
- 7eL. J. Kirschenbaum, B. Ruekberg, J. Chem. Educ. 2012, 89, 351–354;
- 7fS. Carniato, L. Journel, R. Guillemin, M. N. Piancastelli, W. C. Stolte, D. W. Lindle, M. Simon, J. Chem. Phys. 2012, 137, 144303;
- 7gP. F. Lang, B. C. Smith, Dalton Trans. 2014, 43, 8016–8025;
- 7hS. A. Blair, A. J. Thakkar, J. Chem. Phys. 2014, 141, 074306;
- 7iI. V. Alabugin, S. Bresch, M. Manoharan, J. Phys. Chem. A 2014, 118, 3663–3677;
- 7jJ. Furtado, F. D. Proft, P. Geerlings, J. Phys. Chem. A 2015, 119, 1339–1346.
- 8
- 8aR. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 1978, 68, 3801–3807;
- 8bN. K. Ray, L. Samuels, R. G. Parr, J. Chem. Phys. 1979, 70, 3680–3684;
- 8cJ. A. Alonso, L. A. Girifalco, J. Chem. Phys. 1980, 73, 1313–1319.
- 9
- 9aR. G. Parr, W. Yang, Annu. Rev. Phys. Chem. 1995, 46, 701–728;
- 9bH. Chermette, J. Comput. Chem. 1999, 20, 129–154;
- 9cM. V. Putz, N. Russo, E. Sicilia, Theor. Chem. Acc. 2005, 114, 38–45;
- 9dP. Geerlings, F. D. Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793–1873;
- 9eE. Matito, M. V. Putz, J. Phys. Chem. A 2011, 115, 12459–12462;
- 9fV. Tognetti, C. Morell, L. Joubert, Chem. Phys. Lett. 2015, 635, 111–115.
- 10
- 10aU. Sternberg, Mol. Phys. 1988, 63, 249–267;
- 10bU. Sternberg, F.-T. Koch, M. Möllhoff, J. Comput. Chem. 1994, 15, 524–531;
- 10cU. Sternberg, W. Prieß, J. Magn. Reson. 1997, 125, 8–19;
- 10dW. Prieß, U. Sternberg, J. Mol. Struct. (Theochem) 2001, 544, 181–190;
- 10eI. Jakovkin, M. Klipfel, C. Muhle-Goll, A. S. Ulrich, B. Luy, U. Sternberg, Phys. Chem. Chem. Phys. 2012, 14, 12263–12276.
- 11
- 11aO. Kajimoto, T. Fueno, Tetrahedron Lett. 1972, 13, 3329–3332;
10.1016/S0040-4039(01)94035-3 Google Scholar
- 11bJ. P. Bonnelle, J. Grimblot, A. O'Huysser, J. Electron Spectrosc. Relat. Phenom. 1975, 7, 151–162;
- 11cP. Livant, J. C. Martin, J. Am. Chem. Soc. 1977, 99, 5761–5767;
- 11dL. J. Adzima, E. N. Duesler, J. C. Martin, J. Org. Chem. 1977, 42, 4001–4005;
- 11eW. Y. Lam, E. N. Duesler, J. C. Martin, J. Am. Chem. Soc. 1981, 103, 127–135;
- 11fC. L. Khetrapal, E. D. Becker, J. Magn. Reson. 1981, 43, 8–14;
- 11gC. L. Khetrapal, R. Highet, Org. Magn. Reson. 1981, 16, 117–118;
- 11hS. Arumugam, A. C. Kunwar, C. L. Khetrapal, Org. Magn. Reson. 1982, 18, 157–158;
- 11iN. Suryaprakash, A. C. Kunwar, C. L. Khetrapal, J. Mol. Struct. 1983, 101, 121–125;
- 11jP. R. Seidl, K. Z. Leal, V. E. U. Costa, M. E. S. Mollmann, Magn. Reson. Chem. 1998, 36, 261–266;
- 11kK. A. Lyssenko, V. A. Ponomarev, M. E. Gurskii, Y. N. Bubnov, M. Y. Antipin, Mendeleev Commun. 2004, 14, 189–191;
- 11lM. Alami, F. Liron, M. Gervais, J.-F. Peyrat, J.-D. Brion, Angew. Chem. Int. Ed. 2002, 41, 1578–1580;
10.1002/1521-3773(20020503)41:9<1578::AID-ANIE1578>3.0.CO;2-C CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 1648–1650;
- 11mM. Rubin, A. Trofimov, V. Gevorgyan, J. Am. Chem. Soc. 2005, 127, 10243–10249;
- 11nS. Vijayalakshmi, A. Föhlisch, P. S. Kirchmann, F. Hennies, A. Pietzsch, M. Nagasono, W. Wurth, Surf. Sci. 2006, 600, 4972–4977; A. Föhlisch, P. S. Kirchmann, F. Hennies, A. Pietzsch, M. Nagasono, W. Wurth, Surf. Sci. 2006, 600, 4972–4977;
- 11oF. Zobi, Inorg. Chem. 2010, 49, 10370–10377;
- 11pJ. D. Figueroa-Villar, A. A. Vieira, J. Mol. Struct. 2013, 1034, 310–317.
- 12
- 12aY. Hashikawa, M. Murata, A. Wakamiya, Y. Murata, Org. Lett. 2014, 16, 2970–2973;
- 12bY. Hashikawa, M. Murata, A. Wakamiya, Y. Murata, J. Am. Chem. Soc. 2016, 138, 4096–4104.
- 13
- 13aF. Wudl, Acc. Chem. Res. 1992, 25, 157–161;
- 13bF. Diederich, L. Isaacs, D. Philp, Chem. Soc. Rev. 1994, 23, 243–255;
- 13cH. Kitamura, T. Oshima, Org. Lett. 2008, 10, 293–296.
- 14
- 14aM. Prato, Q. C. Li, F. Wudl, J. Am. Chem. Soc. 1993, 115, 1148–1150;
- 14bT. Grösser, M. Prato, V. Lucchini, A. Hirsch, F. Wudl, Angew. Chem. Int. Ed. Engl. 1995, 34, 1343–1345; Angew. Chem. 1995, 107, 1462–1464;
- 14cJ. C. Hummelen, M. Prato, F. Wudl, J. Am. Chem. Soc. 1995, 117, 7003–7004.
- 15
- 15aA. L. Balch, D. A. Costa, B. C. Noll, M. M. Olmstead, J. Am. Chem. Soc. 1995, 117, 8926–8932;
- 15bY. Tajima, K. Takeshi, Y. Shigemitsu, Y. Numata, Molecules 2012, 17, 6395–6414.
- 16
- 16aK. Kurotobi, Y. Murata, Science 2011, 333, 613–616;
- 16bA. Krachmalnicoff, M. H. Levitt, R. J. Whitby, Chem. Commun. 2014, 50, 13037–13040.
- 17
- 17aY. Rubin, Chem. Eur. J. 1997, 3, 1009–1016;
- 17bK. Komatsu, Y. Murata, Chem. Lett. 2005, 34, 886–891;
- 17cM. Murata, Y. Murata, K. Komatsu, Chem. Commun. 2008, 6083–6094;
- 17dG. C. Vougioukalakis, M. M. Roubelakis, M. Orfanopoulos, Chem. Soc. Rev. 2010, 39, 817–844.
- 18A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735–746.
- 19Gaussian 09 (Revision B.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,; T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc.: Wallingford, CT, 2010.
- 20
- 20aN. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev. 1948, 73, 679–712;
- 20bE. D. Becker, High Resolution NMR: Theory and Chemical Applications, 3rd ed., Academic Press, New York, 1999.
- 21CCDC 1494947 and 1494948 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.