Influence of Guest Exchange on the Magnetization Dynamics of Dilanthanide Single-Molecule-Magnet Nodes within a Metal–Organic Framework†
Xuejing Zhang
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Search for more papers by this authorVeacheslav Vieru
Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Search for more papers by this authorXiaowen Feng
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorJun-Liang Liu
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorDr. Zhenjie Zhang
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Search for more papers by this authorDr. Bo Na
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Shi
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Wei Shi, Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Song Gao, Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Jeffrey R. Long, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorProf. Dr. Bing-Wu Wang
Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Search for more papers by this authorProf. Dr. Annie K. Powell
Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Liviu F. Chibotaru
Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Wei Shi, Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Song Gao, Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Jeffrey R. Long, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Song Gao
Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Wei Shi, Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Song Gao, Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Jeffrey R. Long, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorProf. Dr. Peng Cheng
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jeffrey R. Long
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Wei Shi, Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Song Gao, Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Jeffrey R. Long, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorXuejing Zhang
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Search for more papers by this authorVeacheslav Vieru
Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Search for more papers by this authorXiaowen Feng
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorJun-Liang Liu
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorDr. Zhenjie Zhang
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Search for more papers by this authorDr. Bo Na
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Shi
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Wei Shi, Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Song Gao, Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Jeffrey R. Long, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorProf. Dr. Bing-Wu Wang
Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Search for more papers by this authorProf. Dr. Annie K. Powell
Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Liviu F. Chibotaru
Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Wei Shi, Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Song Gao, Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Jeffrey R. Long, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Song Gao
Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Wei Shi, Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Song Gao, Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Jeffrey R. Long, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorProf. Dr. Peng Cheng
Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jeffrey R. Long
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Wei Shi, Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P. R. China)
Liviu F. Chibotaru, Theory of Nanomaterials Group and INPAC—Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)
Song Gao, Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (P. R. China)
Jeffrey R. Long, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
Search for more papers by this authorThis work was supported by the “973” program (grant number 2012CB821702), the NSFC (grant numbers 21331003, 21373115, and 91422302) and the MOE (grant numbers NCET-13-0305 and IRT-13R30). Research at UC Berkeley was carried out within the Nanoporous Materials Genome Center, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under award DE-FG02-12ER16362. We thank very much Dr. Chen Gao from Peking University for the help with PPMS measurement. We also thank the reviewers for their valuable comments which have improved the manuscript.
Graphical Abstract
Guest swap: Exchange of the guest molecules within the pores of a metal–organic framework (MOF) featuring Dy2 single-molecule magnets as nodes imparts major changes in the magnetization relaxation dynamics (see picture; spectra recorded from 2 K (blue plots) to 9 K (red)). As a result of guest exchange, significantly different effective relaxation barriers (Ueff) for the compound are measured. Atom colors: Dy=green, O=red, N=blue, C=gray.
Abstract
Multitopic organic linkers can provide a means to organize metal cluster nodes in a regular three-dimensional array. Herein, we show that isonicotinic acid N-oxide (HINO) serves as the linker in the formation of a metal–organic framework featuring Dy2 single-molecule magnets as nodes. Importantly, guest solvent exchange induces a reversible single-crystal to single-crystal transformation between the phases Dy2(INO)4(NO3)2⋅2 solvent (solvent=DMF (Dy2-DMF), CH3CN (Dy2-CH3CN)), thereby switching the effective magnetic relaxation barrier (determined by ac magnetic susceptibility measurements) between a negligible value for Dy2-DMF and 76 cm−1 for Dy2-CH3CN. Ab initio calculations indicate that this difference arises not from a significant change in the intrinsic relaxation barrier of the Dy2 nodes, but rather from a slowing of the relaxation rate of incoherent quantum tunneling of the magnetization by two orders of magnitude.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201503636_sm_miscellaneous_information.pdf3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. N. Leuenberger, D. Loss, Nat. Chem. 2001, 410, 789–793;
- 1bD. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 2003, 42, 268–297; Angew. Chem. 2003, 115, 278–309;
- 1cS. Hill, R. S. Edwards, N. Aliaga-Alcalde, G. Christou, Science 2003, 302, 1015–1018;
- 1dD. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, Oxford, 2006;
- 1eL. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179–186;
- 1fP. Jarillo-Herrero, Science 2010, 328, 1362–1363;
- 1gM. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M.-A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, R. Sessoli, Nature 2010, 468, 417–421;
- 1hS. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 2014, 344, 1135–1138.
- 2
- 2aR. Sessoli, A. K. Powell, Coord. Chem. Rev. 2009, 253, 2328–2341;
- 2bB. W. Wang, S. D. Jiang, X. T. Wang, S. Gao, Sci. China Ser. B 2009, 11, 1739–1758;
- 2cJ. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078–2085;
- 2dL. Sorace, C. Benelli, D. Gatteschi, Chem. Soc. Rev. 2011, 40, 3092–3104;
- 2eD. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110–5148.
- 3
- 3aN. Ishikawa, M. Sugita, T. Ishikawa, S.-y. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694–8695;
- 3bM. A. AlDamen, J. M. Clemente-Juan, E. Coronado, C. Martí-Gastaldo, A. Gaita-Ariño, J. Am. Chem. Soc. 2008, 130, 8874–8875;
- 3cS. D. Jiang, B. W. Wang, H. L. Sun, Z. M. Wang, S. Gao, J. Am. Chem. Soc. 2011, 133, 4730–4733;
- 3dC. R. Ganivet, B. Ballesteros, G. de La Torre, J. M. Clemente-Juan, E. Coronado, T. Torres, Chem. Eur. J. 2013, 19, 1457–1465;
- 3eJ.-L. Liu, Y.-C. Chen, Y.-Z. Zheng, W.-Q. Lin, L. Ungur, W. Wernsdorfer, L. F. Chibotaru, M.-L. Tong, Chem. Sci. 2013, 4, 3310–3316.
- 4
- 4aN. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc. 2005, 127, 3650–3651;
- 4bN. Ishikawa, M. Sugita, R. Clérac, W. Wernsdorfer, Angew. Chem. Int. Ed. 2005, 44, 2931–2935; Angew. Chem. 2005, 117, 2991–2995.
- 5F. Pointillart, K. Bernot, S. Golhen, B. L. Guennic, T. Guizouarn, L. Ouahab, O. Cador, Angew. Chem. Int. Ed. 2015, 54, 1504–1507; Angew. Chem. 2015, 127, 1524–1527.
- 6
- 6aS. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, S. Gao, Angew. Chem. Int. Ed. 2010, 49, 7448–7451; Angew. Chem. 2010, 122, 7610–7613;
- 6bF. Habib, P. H. Lin, J. Long, I. Korobkov, W. Wernsdorfer, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 8830–8833;
- 6cK. R. Meihaus, J. R. Long, J. Am. Chem. Soc. 2013, 135, 17952–17957;
- 6dB. Na, X.-J. Zhang, W. Shi, Y.-Q. Zhang, B.-W. Wang, C. Gao, S. Gao, P. Cheng, Chem. Eur. J. 2014, 20, 15975–15980.
- 7
- 7aJ. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538–542;
- 7bY.-N. Guo, G.-F. Xu, W. Wernsdorfer, L. Ungur, Y. Guo, J. Tang, H.-J. Zhang, L. F. Chibotaru, A. K. Powell, J. Am. Chem. Soc. 2011, 133, 11948–11951;
- 7cJ. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14236–14239;
- 7dS. Demir, J. Zadrozny, M. Nippe, J. R. Long, J. Am. Chem. Soc. 2012, 134, 18546–18549.
- 8
- 8aE. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606–1610;
- 8bZ. R. Herm, B. M. Wiers, J. A. Mason, J. M. van Baten, M. R. Hudson, P. Zajdel, C. M. Brown, N. Masciocchi, R. Krishna, J. R. Long, Science 2013, 340, 960–964.
- 9T. A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Chem. Soc. Rev. 2012, 41, 7761–7779.
- 10
- 10aJ. Rocha, L. D. Carlos, F. A. Almeida Paz, D. Ananias, Chem. Soc. Rev. 2011, 40, 926–940;
- 10bJ. Heine, K. Müller-Buschbaum, Chem. Soc. Rev. 2013, 42, 9232–9242.
- 11A. Corma, H. Garcia, F. X. L. Xamena, Chem. Rev. 2010, 110, 4606–4655.
- 12
- 12aG. Cucinotta, M. Perfetti, J. Luzon, M. Etienne, P.-E. Car, A. Caneschi, G. Calvez, K. Bernot, R. Sessoli, Angew. Chem. Int. Ed. 2012, 51, 1606–1610; Angew. Chem. 2012, 124, 1638–1642;
- 12bM.-E. Boulon, G. Cucinotta, J. Luzon, C. Degl’Innocenti, M. Perfetti, K. Bernot, G. Calvez, A. Caneschi, R. Sessoli, Angew. Chem. Int. Ed. 2013, 52, 350–354; Angew. Chem. 2013, 125, 368–372.
- 13W. Shi, K. Liu, P. Cheng, Struct. Bonding (Berlin) 2015, 163, 231–263.
- 14
- 14aY. Wang, W. Shi, H. Li, Y. Song, L. Fang, Y. Lan, A. K. Powell, W. Wernsdorfer, L. Ungur, L. F. Chibotaru, M. Shen, P. Cheng, Chem. Sci. 2012, 3, 3366–3370;
- 14bT. Han, W. Shi, X. P. Zhang, L. L. Li, P. Cheng, Inorg. Chem. 2012, 51, 13009–13016;
- 14cT. Han, W. Shi, Z. Niu, B. Na, P. Cheng, Chem. Eur. J. 2013, 19, 994–1001;
- 14dS. Zhang, W. Shi, L. Li, E. Duan, P. Cheng, Inorg. Chem. 2014, 53, 10340–10346;
- 14eK. Liu, W. Shi, P. Cheng, Coord. Chem. Rev. 2015, 289–290, 74–122.
- 15J. A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor & Francis, London, 1993.
- 16M. Hagiwara, J. Magn. Magn. Mater. 1998, 177–181, 89–90.
- 17
- 17aL. F. Chibotaru, L. Ungur, C. Aronica, H. Elmoll, G. Pilet, D. Luneau, J. Am. Chem. Soc. 2008, 130, 12445–12455;
- 17bF. Aquilante, L. De Vico, N. Ferre, G. Ghigo, P.-A. Malmqvist, P. Neogrady, T. B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andres, M. Urban, V. Veryazov, R. Lindh, J. Comput. Chem. 2010, 31, 224–247;
- 17cL. F. Chibotaru, L. Ungur, J. Chem. Phys. 2012, 137, 064112;
- 17dhttp://molcas.org/documentation/manual.
- 18M. E. Lines, J. Chem. Phys. 1971, 55, 2977–2984.
- 19
- 19aH. Zabrodsky, S. Peleg, D. Avnir, J. Am. Chem. Soc. 1992, 114, 7843–7851;
- 19bM. Pinsky, D. Avnir, Inorg. Chem. 1998, 37, 5575–5582.