Ligand-Free Copper-Catalyzed Negishi Coupling of Alkyl-, Aryl-, and Alkynylzinc Reagents with Heteroaryl Iodides†
Surendra Thapa
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorArjun Kafle
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorDr. Santosh K. Gurung
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorAdam Montoya
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorPatrick Riedel
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorCorresponding Author
Prof. Ramesh Giri
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)Search for more papers by this authorSurendra Thapa
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorArjun Kafle
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorDr. Santosh K. Gurung
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorAdam Montoya
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorPatrick Riedel
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Search for more papers by this authorCorresponding Author
Prof. Ramesh Giri
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131 (USA)Search for more papers by this authorWe thank the University of New Mexico (UNM) for financial support, and upgrades to the NMR (NSF grants CHE08-40523 and CHE09-46690) and MS Facilities.
Graphical Abstract
Simply copper: Primary, secondary, and tertiary alkylzinc reagents couple with heteroaryl iodides in the presence of ligand-free CuI without complications arising from β-hydride elimination and rearrangement. The reactions can also be extended to the coupling of aryl- and alkynylzinc reagents. DMF=N,N-dimethylformamide.
Abstract
Reported herein is an unprecedented ligand-free copper-catalyzed cross-coupling of alkyl-, aryl-, and alkynylzinc reagents with heteroaryl iodides. The reaction proceeds at room temperature for the coupling of primary, secondary, and tertiary alkylzinc reagents with heteroaryl iodides without rearrangement. An elevated temperature (100 °C) is required for aryl–heteroaryl and alkynyl–heteroaryl couplings.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201502379_sm_miscellaneous_information.pdf2.1 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews, see:
- 1aF. Diederich, P. J. Stang, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, New York, 1998;
10.1002/9783527612222 Google Scholar
- 1bE.-i. Negishi, Q. Hu, Z. Huang, M. Qian, G. Wang, Aldrichimica Acta 2005, 38, 71;
- 1cG. C. Fu, Acc. Chem. Res. 2008, 41, 1555;
- 1d Organozinc Reagents: A Practical Approach (Eds.: ), Oxford University Press, Oxford, 1999.
- 2For a review, see: R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417–1492.
- 3
- 3aL. Melzig, A. Metzger, P. Knochel, J. Org. Chem. 2010, 75, 2131–2133;
- 3bA. Joshi-Pangu, M. Ganesh, M. R. Biscoe, Org. Lett. 2011, 13, 1218–1221;
- 3cL. Melzig, T. Dennenwaldt, A. Gavryushin, P. Knochel, J. Org. Chem. 2011, 76, 8891–8906;
- 3dL. Melzig, A. Gavryushin, P. Knochel, Org. Lett. 2007, 9, 5529–5532;
- 3eT. Thaler, B. Haag, A. Gavryushin, K. Schober, E. Hartmann, R. M. Gschwind, H. Zipse, P. Mayer, P. Knochel, Nat. Chem. 2010, 2, 125–130;
- 3fY. Yang, K. Niedermann, C. Han, S. L. Buchwald, Org. Lett. 2014, 16, 4638–4641;
- 3gM. Pompeo, R. D. J. Froese, N. Hadei, M. G. Organ, Angew. Chem. Int. Ed. 2012, 51, 11354–11357; Angew. Chem. 2012, 124, 11516–11519;
- 3hY. A. Getmanenko, R. J. Twieg, J. Org. Chem. 2008, 73, 830–839;
- 3iT. Bach, S. Heuser, J. Org. Chem. 2002, 67, 5789–5795;
- 3jI. Kondolff, H. Doucet, M. Santelli, Organometallics 2006, 25, 5219–5222;
- 3kI. A. S. Walters, Tetrahedron Lett. 2006, 47, 341–344;
- 3lA. Krasovskiy, C. Duplais, B. H. Lipshutz, J. Am. Chem. Soc. 2009, 131, 15592–15593.
- 4
- 4aM. R. Netherton, G. C. Fu, Adv. Synth. Catal. 2004, 346, 1525–1532;
- 4bD. J. Cárdenas, Angew. Chem. Int. Ed. 2003, 42, 384–387; Angew. Chem. 2003, 115, 398–401.
- 5
- 5aK. Tamao, Y. Kiso, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 1972, 94, 9268–9269;
- 5bY. Kiso, K. Tamao, M. Kumada, J. Organomet. Chem. 1973, 50, C 12–C14.
- 6
- 6aV. F. Slagt, A. H. M. de Vries, J. G. de Vries, R. M. Kellogg, Org. Process Res. Dev. 2009, 14, 30–47;
- 6bK. Billingsley, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3358–3366.
- 7
- 7aJ. Magano, J. R. Dunetz, Chem. Rev. 2011, 111, 2177–2250;
- 7bM. Baumann, I. R. Baxendale, Beilstein J. Org. Chem. 2013, 9, 2265–2319.
- 8
- 8aC. Han, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 7532–7533;
- 8bJ. Zhou, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 14726–14727;
- 8cC. Dai, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 2719–2724;
- 8dT. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, J. Am. Chem. Soc. 1984, 106, 158–163;
- 8eN. Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hartwig, J. Org. Chem. 2002, 67, 5553–5566.
- 9For previous seminal works on ligand-free copper-catalyzed couplings of secondary and tertiary alkyl Grignard reagents, see:
- 9aL. Hintermann, L. Xiao, A. Labonne, Angew. Chem. Int. Ed. 2008, 47, 8246–8250; Angew. Chem. 2008, 120, 8370–8374;
- 9bD. H. Burns, J. D. Miller, H.-K. Chan, M. O. Delaney, J. Am. Chem. Soc. 1997, 119, 2125–2133;
- 9cG. Cahiez, O. Gager, J. Buendia, Angew. Chem. Int. Ed. 2010, 49, 1278–1281; Angew. Chem. 2010, 122, 1300–1303.
- 10
- 10aS. K. Gurung, S. Thapa, A. S. Vangala, R. Giri, Org. Lett. 2013, 15, 5378–5381;
- 10bS. K. Gurung, S. Thapa, A. Kafle, D. A. Dickie, R. Giri, Org. Lett. 2014, 16, 1264–1267;
- 10cS. K. Gurung, S. Thapa, B. Shrestha, R. Giri, Synthesis 2014, 1933–1937;
- 10dS. Thapa, S. K. Gurung, D. A. Dickie, R. Giri, Angew. Chem. Int. Ed. 2014, 53, 11620–11624; Angew. Chem. 2014, 126, 11804–11808;
- 10eS. Thapa, P. Basnet, S. K. Gurung, R. Giri, Chem. Commun. 2015, 51, 4009–4012.
- 11For additional examples of copper-catalyzed cross-couplings with organometallic reagents of Mg, B, Sn, and Si, see:
- 11aC.-T. Yang, Z.-Q. Zhang, J. Liang, J.-H. Liu, X.-Y. Lu, H.-H. Chen, L. Liu, J. Am. Chem. Soc. 2012, 134, 11124–11127;
- 11bJ. Terao, A. Ikumi, H. Kuniyasu, N. Kambe, J. Am. Chem. Soc. 2003, 125, 5646–5647;
- 11cG. D. Allred, L. S. Liebeskind, J. Am. Chem. Soc. 1996, 118, 2748–2749;
- 11dJ. R. Falck, R. K. Bhatt, J. Ye, J. Am. Chem. Soc. 1995, 117, 5973–5982;
- 11eS.-K. Kang, J.-S. Kim, S.-C. Choi, J. Org. Chem. 1997, 62, 4208–4209;
- 11fJ.-H. Li, B.-X. Tang, L.-M. Tao, Y.-X. Xie, Y. Liang, M.-B. Zhang, J. Org. Chem. 2006, 71, 7488–7490;
- 11gL. Cornelissen, M. Lefrancq, O. Riant, Org. Lett. 2014, 16, 3024–3027;
- 11hA. Tsubouchi, D. Muramatsu, T. Takeda, Angew. Chem. Int. Ed. 2013, 52, 12719–12722; Angew. Chem. 2013, 125, 12951–12954;
- 11iH. Taguchi, A. Tsubouchi, T. Takeda, Tetrahedron Lett. 2003, 44, 5205–5207;
- 11jM. B. Thathagar, J. Beckers, G. Rothenberg, J. Am. Chem. Soc. 2002, 124, 11858–11859;
- 11kJ.-H. Li, J.-L. Li, D.-P. Wang, S.-F. Pi, Y.-X. Xie, M.-B. Zhang, X.-C. Hu, J. Org. Chem. 2007, 72, 2053–2057;
- 11lY. Zhou, W. You, K. B. Smith, M. K. Brown, Angew. Chem. Int. Ed. 2014, 53, 3475–3479; Angew. Chem. 2014, 126, 3543–3547;
- 11mC.-T. Yang, Z.-Q. Zhang, Y.-C. Liu, L. Liu, Angew. Chem. Int. Ed. 2011, 50, 3904–3907; Angew. Chem. 2011, 123, 3990–3993;
- 11nG. Cahiez, S. Marquais, Synlett 1993, 45–47;
- 11oG. Cahiez, S. Marquais, Pure Appl. Chem. 1996, 68, 53–60;
- 11pP. Ren, L.-A. Stern, X. Hu, Angew. Chem. Int. Ed. 2012, 51, 9110; Angew. Chem. 2012, 124, 9244;
- 11qAlso see: Ref. [9].
- 12For reviews on copper-catalyzed couplings, see:
- 12aI. P. Beletskaya, A. V. Cheprakov, Coord. Chem. Rev. 2004, 248, 2337–2364;
- 12bG. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054–3131;
- 12cB. H. Lipshutz, Acc. Chem. Res. 1997, 30, 277–282;
- 12dJ. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359–1470.
- 13H. K. Hofstee, J. Boersma, G. J. M. Van Der Kerk, J. Organomet. Chem. 1978, 144, 255–261.
- 14A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040–6044; Angew. Chem. 2006, 118, 6186–6190.
- 15T. Hjelmgaard, D. Tanner, Org. Biomol. Chem. 2006, 4, 1796–1805.
- 16
- 16aFor an example of the reaction of an alkylzinc reagent with allenyl bromide and alkynyl iodide in the presence of stoichiometric amounts of CuCN⋅2 LiCl, see: W. F. J. Karstens, M. J. Moolenaar, F. P. J. T. Rutjes, U. Grabowska, W. N. Speckamp, H. Hiemstra, Tetrahedron Lett. 1999, 40, 8629–8632;
- 16bFor an important study on copper-catalyzed reaction of alkylzinc reagents with α-chloroketones by an SN2 process, see: C. F. Malosh, J. M. Ready, J. Am. Chem. Soc. 2004, 126, 10240.
- 17
- 17aA. L. Hansen, J.-P. Ebran, T. M. Gøgsig, T. Skrydstrup, J. Org. Chem. 2007, 72, 6464–6472;
- 17bH. N. Hunter, N. Hadei, V. Blagojevic, P. Patschinski, G. T. Achonduh, S. Avola, D. K. Bohme, M. G. Organ, Chem. Eur. J. 2011, 17, 7845–7851.
- 18Reactions were run in a N2-filled glovebox. The product was formed in slightly lower yield (76 %) when the reaction was conducted with the standard Schlenk technique.
- 19For previous examples of couplings using secondary alkyl Grignard reagents with copper catalysts, see: Refs. [9b–c, 11a,b]. For couplings with tertiary alkyl Grignard reagents with Cu-catalysts, see: Ref. [9]. For couplings with tertiary alkyl Grignard reagents with nickel catalysts, see:
- 19aC. Lohre, T. Dröge, C. Wang, F. Glorius, Chem. Eur. J. 2011, 17, 6052–6055;
- 19bA. Joshi-Pangu, C.-Y. Wang, M. R. Biscoe, J. Am. Chem. Soc. 2011, 133, 8478–8481.
- 20For copper-catalyzed direct coupling of heteroarenes with aryl iodides, see:
- 20aH.-Q. Do, O. Daugulis, J. Am. Chem. Soc. 2007, 129, 12404–12405;
- 20bH.-Q. Do, R. M. K. Khan, O. Daugulis, J. Am. Chem. Soc. 2008, 130, 15185–15192.
- 21Based on previous copper-catalyzed couplings (see Ref. [10]), the current reaction can be assumed to proceed by transmetalation followed by reaction with ArI. Since RZnX are known to undergo transmetalation with copper(I) salts below room temperature (see Ref. [13]), we believe that the reaction with ArI could be rate-limiting. In addition, alkylcopper(I) species are more electron-rich than aryl- and alkynylcopper(I) species and are more likely to react with ArI at lower temperatures than aryl- and alkynylcopper(I) species formed after transmetalation with alkyl-, aryl-, and alkynylzinc reagents.