Large Optical Nonlinearity Induced by Singlet Fission in Pentacene Films†
Yunlong Liu
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorCorresponding Author
Prof. Chunfeng Zhang
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Chunfeng Zhang, National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Min Xiao, National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorRui Wang
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorBo Zhang
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorProf. Zhanao Tan
New and Renewable Energy of Beijing Key Laboratory, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)
Search for more papers by this authorProf. Xiaoyong Wang
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorCorresponding Author
Prof. Min Xiao
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China)
Department of Physics, University of Arkansas, Fayetteville, AR 72701 (USA)
Chunfeng Zhang, National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Min Xiao, National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorYunlong Liu
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorCorresponding Author
Prof. Chunfeng Zhang
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Chunfeng Zhang, National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Min Xiao, National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorRui Wang
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorBo Zhang
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorProf. Zhanao Tan
New and Renewable Energy of Beijing Key Laboratory, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)
Search for more papers by this authorProf. Xiaoyong Wang
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorCorresponding Author
Prof. Min Xiao
National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China)
Department of Physics, University of Arkansas, Fayetteville, AR 72701 (USA)
Chunfeng Zhang, National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
Min Xiao, National Laboratory of Solid State Microstructures, School of Physics & College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China)
Search for more papers by this authorThis work is supported by the National Basic Research Program of China (grant numbers 2013CB932903 and 2012CB921801, MOST), the National Science Foundation of China (grant numbers 91233103, 61108001, 11227406, and 11321063), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We acknowledge Dr. Xuewei Wu for his technical assistance.
Graphical Abstract
Abstract
By creating two triplet excitons from one photo-excited singlet exciton, singlet fission in organic semiconductors has drawn tremendous attention for its potential applications in boosting the efficiency of solar conversion. Here, we show that this carrier-multiplication effect can also be used to dramatically improve the nonlinear optical response in organic materials. We have observed large optical nonlinearity with a magnitude of χ(3) up to 10−9 esu in pentacene films, which is further shown to be a result of singlet fission by monitoring the temporal dynamics. The potential application of such efficient nonlinear optical response has been demonstrated with a singlet-fission-induced polarization rotation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201501396_sm_miscellaneous_information.pdf317.1 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. L. Bredas, C. Adant, P. Tackx, A. Persoons, B. M. Pierce, Chem. Rev. 1994, 94, 243–278.
- 2D. F. Eaton, Science 1991, 253, 281–287.
- 3B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry, Nature 1999, 398, 51–54.
- 4J. Sheng, U. Khadka, M. Xiao, Phys. Rev. Lett. 2012, 109, 223906.
- 5X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, Q. H. Gong, Nat. Photonics 2008, 2, 185–189.
- 6M. A. Petruska, A. V. Malko, P. M. Voyles, V. I. Klimov, Adv. Mater. 2003, 15, 610–613.
- 7G. de La Torre, P. Vaquez, F. Agullo-Lopez, T. Torres, Chem. Rev. 2004, 104, 3723–3750.
- 8J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, S. R. Marder, Science 2010, 327, 1485–1488.
- 9M. M. Russew, S. Hecht, Adv. Mater. 2010, 22, 3348–3360.
- 10G. S. He, J. Zhu, A. Baev, M. Samoc, D. L. Frattarelli, N. Watanabe, A. Facchetti, H. Agren, T. J. Marks, P. N. Prasad, J. Am. Chem. Soc. 2011, 133, 6675–6680.
- 11R. L. Gieseking, S. Mukhopadhyay, C. Risko, S. R. Marder, J.-L. Bredas, Adv. Mater. 2014, 26, 68–84.
- 12J. M. Hales, S. Barlow, H. Kim, S. Mukhopadhyay, J.-L. Bredas, J. W. Perry, S. R. Marder, Chem. Mater. 2014, 26, 549–560.
- 13H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 3267–3286.
- 14A. Scarpaci, A. Nantalaksaku, J. M. Hales, J. D. Matichak, S. Barlow, M. Rumi, J. W. Perry, S. R. Marder, Chem. Mater. 2012, 24, 1606–1618.
- 15S.-i. Kato, M. T. R. Beels, P. La Porta, W. B. Schweizer, C. Boudon, J.-P. Gisselbrecht, I. Biaggio, F. Diederich, Angew. Chem. Int. Ed. 2010, 49, 6207–6211; Angew. Chem. 2010, 122, 6343–6347.
- 16K. J. Thorley, J. M. Hales, H. L. Anderson, J. W. Perry, Angew. Chem. Int. Ed. 2008, 47, 7095–7098; Angew. Chem. 2008, 120, 7203–7206.
- 17Y. Liu, C. Zhang, H. Zhang, R. Wang, Z. Hua, X. Wang, J. Zhang, M. Xiao, Adv. Mater. 2013, 25, 4397–4402.
- 18M. B. Smith, J. Michl, Chem. Rev. 2010, 110, 6891–6936.
- 19M. B. Smith, J. Michl, Annu. Rev. Phys. Chem. 2013, 64, 361–386.
- 20I. Paci, J. C. Johnson, X. Chen, G. Rana, D. Popovic, D. E. David, A. J. Nozik, M. A. Ratner, J. Michl, J. Am. Chem. Soc. 2006, 128, 16546–16553.
- 21B. Zhang, C. Zhang, R. Wang, Z. Tan, Y. Liu, W. Guo, X. Zhai, Y. Cao, X. Wang, M. Xiao, J. Phys. Chem. Lett. 2014, 5, 3462.
- 22D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Van Voorhis, M. A. Baldo, Science 2013, 340, 334–337.
- 23W.-L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila, X. Y. Zhu, Science 2011, 334, 1541–1545.
- 24M. W. Wilson, A. Rao, J. Clark, R. S. Kumar, D. Brida, G. Cerullo, R. H. Friend, J. Am. Chem. Soc. 2011, 133, 11830–11833.
- 25H. Marciniak, M. Fiebig, M. Huth, S. Schiefer, B. Nickel, F. Selmaier, S. Lochbrunner, Phys. Rev. Lett. 2007, 99, 176402.
- 26V. K. Thorsmolle, R. D. Averitt, J. Demsar, D. L. Smith, S. Tretiak, R. L. Martin, X. Chi, B. K. Crone, A. P. Ramirez, A. J. Taylor, Phys. Rev. Lett. 2009, 102, 017401.
- 27B. Ehrler, M. W. B. Wilson, A. Rao, R. H. Friend, N. C. Greenham, Nano Lett. 2012, 12, 1053–1057.
- 28M. W. B. Wilson, A. Rao, B. Ehrler, R. H. Friend, Acc. Chem. Res. 2013, 46, 1330–1338.
- 29C. Jundt, G. Klein, B. Sipp, J. Lemoigne, M. Joucla, A. A. Villaeys, Chem. Phys. Lett. 1995, 241, 84–88.
- 30H. Marciniak, I. Pugliesi, B. Nickel, S. Lochbrunner, Phys. Rev. B 2009, 79, 235318.
- 31A. Rao, M. W. B. Wilson, J. M. Hodgkiss, S. Albert-Seifried, H. Baessler, R. H. Friend, J. Am. Chem. Soc. 2010, 132, 12698–12703.
- 32T. S. Kuhlman, J. Kongsted, K. V. Mikkelsen, K. B. Moller, T. I. Solling, J. Am. Chem. Soc. 2010, 132, 3431–3439.
- 33R. P. Groff, P. Avakian, R. E. Merrifield, Phys. Rev. B 1970, 1, 815–817.
- 34N. J. Thompson, M. W. B. Wilson, D. N. Congreve, P. R. Brown, J. M. Scherer, T. S. Bischof, M. Wu, N. Geva, M. Welborn, T. V. Voorhis, V. Bulović, M. G. Bawendi, M. A. Baldo, Nat. Mater. 2014, 13, 1039–1043.
- 35N. J. Thompson, E. Hontz, D. N. Congreve, M. E. Bahlke, S. Reineke, T. Van Voorhis, M. A. Baldo, Adv. Mater. 2014, 26, 1366–1371.
- 36M. Tabachnyk, B. Ehrler, S. Gélinas, M. L. Böhm, B. J. Walker, K. P. Musselman, N. C. Greenham, R. H. Friend, A. Rao, Nat. Mater. 2014, 13, 1033–1038.
- 37S. Singh, W. J. Jones, W. Siebrand, B. Stoichef, W. Schneide, J. Chem. Phys. 1965, 42, 330–342.
- 38M. N. Berberan-Santos, E. N. Bodunov, B. Valeur, Chem. Phys. 2005, 315, 171–182.
- 39J. J. Burdett, A. M. Mueller, D. Gosztola, C. J. Bardeen, J. Chem. Phys. 2010, 133, 144506.
- 40Y. Zhang, S. R. Forrest, Phys. Rev. Lett. 2012, 108, 267404.
- 41C. Bree, A. Demircan, G. Steinmeyer, Phys. Rev. Lett. 2011, 106, 183902.
- 42M. E. Orczyk, J. Swiatkiewicz, G. L. Huang, P. N. Prasad, J. Phys. Chem. 1994, 98, 7307–7312.
- 43L. Yin, J. Zhang, P. M. Fauchet, G. P. Agrawal, Opt. Lett. 2009, 34, 476–478.
- 44R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, S. Radic, Science 2014, 345, 417–419.
- 45B. J. Walker, A. J. Musser, D. Beljonne, R. H. Friend, Nat. Chem. 2013, 5, 1019–1024.
- 46A. Ito, A. Shimizu, N. Kishida, Y. Kawanaka, D. Kosumi, H. Hashimoto, Y. Teki, Angew. Chem. Int. Ed. 2014, 53, 6715–6719; Angew. Chem. 2014, 126, 6833–6837.