The Significance of Ion Conduction in a Hybrid Organic–Inorganic Lead-Iodide-Based Perovskite Photosensitizer†
Dr. Tae-Youl Yang
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Search for more papers by this authorCorresponding Author
Dr. Giuliano Gregori
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)Search for more papers by this authorNorman Pellet
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Department of Chemistry and Chemical Engineering, Swiss Federal Institute of Technology, Station 6, 1015 Lausanne (Switzerland)
Search for more papers by this authorProf. Michael Grätzel
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Department of Chemistry and Chemical Engineering, Swiss Federal Institute of Technology, Station 6, 1015 Lausanne (Switzerland)
Search for more papers by this authorCorresponding Author
Prof. Joachim Maier
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)Search for more papers by this authorDr. Tae-Youl Yang
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Search for more papers by this authorCorresponding Author
Dr. Giuliano Gregori
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)Search for more papers by this authorNorman Pellet
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Department of Chemistry and Chemical Engineering, Swiss Federal Institute of Technology, Station 6, 1015 Lausanne (Switzerland)
Search for more papers by this authorProf. Michael Grätzel
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Department of Chemistry and Chemical Engineering, Swiss Federal Institute of Technology, Station 6, 1015 Lausanne (Switzerland)
Search for more papers by this authorCorresponding Author
Prof. Joachim Maier
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)Search for more papers by this authorDr. H. Hoier and A. Fuchs are thanked for XRD and SEM analyses, respectively.
Graphical Abstract
Abstract
The success of perovskite solar cells has sparked enormous excitement in the photovoltaic community not only because of unexpectedly high efficiencies but also because of the future potential ascribed to such crystalline absorber materials. Far from being exhaustively studied in terms of solid-state properties, these materials surprised by anomalies such as a huge apparent low-frequency dielectric constant and pronounced hysteretic current–voltage behavior. Here we show that methylammonium (but also formamidinium) iodoplumbates are mixed conductors with a large fraction of ion conduction because of iodine ions. In particular, we measure and model the stoichiometric polarization caused by the mixed conduction and demonstrate that the above anomalies can be explained by the build-up of stoichiometric gradients as a consequence of ion blocking interfaces. These findings provide insight into electrical charge transport in the hybrid organic–inorganic lead halide solar cells as well as into new possibilities of improving the photovoltaic performance by controlling the ionic disorder.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201500014_sm_miscellaneous_information.pdf10.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Solid State Commun. 2003, 127, 619–623.
- 2G. C. Papavassiliou, G. A. Mousdis, I. B. Koutselas, Adv. Mater. Opt. Electron. 1999, 9, 265–271.
- 3G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344–347.
- 4A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, M. Grätzel, ACS Nano 2013, 8, 362–373.
- 5I. Borriello, G. Cantele, D. Ninno, Phys. Rev. B 2008, 77, 235214.
- 6A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 7J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Energy Environ. Sci. 2013, 6, 1739–1743.
- 8J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316–319.
- 9H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, Sci. Rep. 2012, 2, 591.
- 10J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764–1769.
- 11S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, S. I. Seok, Energy Environ. Sci. 2014, 7, 2614–2618.
- 12S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341–344.
- 13C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584–1589.
- 14W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 2014, 104, 063903.
- 15M. H. Du, J. Mater. Chem. A 2014, 2, 9091–9098.
- 16E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, J. Bisquert, J. Phys. Chem. Lett. 2014, 5, 2390–2394.
- 17R. S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y. S. Kang, I. Mora-Sero, J. Bisquert, J. Phys. Chem. Lett. 2014, 5, 2357–2363.
- 18N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897–903.
- 19H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, W. Zhang, J. Phys. Chem. Lett. 2014, 5, 1511–1515.
- 20E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumuller, M. G. Christoforo, M. D. McGehee, Energy Environ. Sci. 2014, 7, 3690–3698.
- 21J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14, 2584–2590.
- 22C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019–9038.
- 23N. Onoda-Yamamuro, T. Matsuo, H. Suga, J. Phys. Chem. Solids 1992, 53, 935–939.
- 24A. Poglitsch, D. Weber, J. Chem. Phys. 1987, 87, 6373–6378.
- 25J. Bisquert, Phys. Chem. Chem. Phys. 2003, 5, 5360–5364.
- 26J. Jamnik, J. Maier, J. Electrochem. Soc. 1999, 146, 4183–4188.
- 27J. Maier, Z. Phys. Chem. 1984, 140, 191–215.
- 28M. H. Hebb, J. Chem. Phys. 1952, 20, 185–190.
- 29I. Yokota, J. Phys. Soc. Jpn. 1953, 8, 595–602.
- 30I. Yokota, J. Phys. Soc. Jpn. 1961, 16, 2213–2223.
- 31T. Baiatu, R. Waser, K.-H. Härdtl, J. Am. Ceram. Soc. 1990, 73, 1663–1673.
- 32J. Blanc, D. L. Staebler, Phys. Rev. B 1971, 4, 3548–3557.
- 33J. Mizusaki, K. Arai, K. Fueki, Solid State Ionics 1983, 11, 203–211.
- 34K. Yamada, K. Isobe, E. Tsuyama, T. Okuda, Y. Furukawa, Solid State Ionics 1995, 79, 152–157.
- 35K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, Bull. Chem. Soc. Jpn. 1998, 71, 127–127.
- 36Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193–198.
- 37N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. 2014, 53, 3151–3157; Angew. Chem. 2014, 126, 3215–3221.
- 38F. Brivio, A. B. Walker, A. Walsh, APL Mater. 2013, 1, 042111.
- 39O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, M. J. v. Oort, Can. J. Chem. 1990, 68, 412.
- 40J. Maier, Physical chemistry of ionic materials, Wiley, Chichester, 2004, pp. 444–460.
10.1002/0470020229 Google Scholar
- 41 Solid state chemistry (Ed.: ), University Press Cambridge, Cambridge, 1997.
- 42D. B. Mitzi, J. Chem. Soc. Dalton Trans. 2001, 1–12.
- 43A. Walsh, D. O. Scanlon, S. Chen, X. G. Gong, S.-H. Wei, Angew. Chem. Int. Ed. 2015, 54, 1791–1794; Angew. Chem. 2015, 127, 1811–1814.
- 44M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H. A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, V. Dalal, Appl. Phys. Lett. 2014, 105, 153502.
- 45S.-H. Duan, H. Zhou, Q. Chen, P. Sun, S. Luo, T.-B. Song, B. Bob, Y. Yang, Phys. Chem. Chem. Phys. 2015, 17, 112–116.
- 46If Refs. [14] and [15] are right in that for all easily formable defects the ionization energy is very small, we might have to refer to extrinsic defects such as substitutional oxygen impurities to efficiently capture the holes (close to the valence band). However, already slightly higher energies that are within the accuracy of such modeling can lead to substantial trapping, if the number of trap centers is very high, as it is the case for ionic disorder. So also intrinsic defects cannot be excluded as trap centers.
- 47J. Maier, J. Am. Ceram. Soc. 1993, 76, 1212–1217.
- 48J. Maier, R. Amin, J. Electrochem. Soc. 2008, 155, A 339–A344.
- 49J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2001, 3, 1668–1678.
- 50J. Jamnik, J. Maier, Ber. Bunsen-Ges. 1997, 101, 23–40.
- 51J. Maier, Solid State Phenom. 1994, 39–40, 35–60.
10.4028/www.scientific.net/SSP.39-40.35 Google Scholar
- 52W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite, Science 2015, 347, 522–525.