Synthesis of Pt–Ni Alloy Nanocrystals with High-Index Facets and Enhanced Electrocatalytic Properties†
Xiling Xu
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin Zhang
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Xin Zhang, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Shi-Gang Sun, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Search for more papers by this authorDr. Hui Sun
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorDr. Ying Yang
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorProf. Dr. Xiaoping Dai
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorProf. Dr. Jinsen Gao
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorXueyong Li
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorPengfang Zhang
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorHong-Hui Wang
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Search for more papers by this authorNeng-Fei Yu
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Shi-Gang Sun
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Xin Zhang, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Shi-Gang Sun, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Search for more papers by this authorXiling Xu
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin Zhang
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Xin Zhang, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Shi-Gang Sun, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Search for more papers by this authorDr. Hui Sun
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorDr. Ying Yang
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorProf. Dr. Xiaoping Dai
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorProf. Dr. Jinsen Gao
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorXueyong Li
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorPengfang Zhang
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Search for more papers by this authorHong-Hui Wang
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Search for more papers by this authorNeng-Fei Yu
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Shi-Gang Sun
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Xin Zhang, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China)
Shi-Gang Sun, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)
Search for more papers by this authorWe thank the National Natural Science Foundation of China (No. 20903119, 21173269, 21321062, and 91127040) and the Ministry of Science and Technology of China (No. 2011BAK15B05).
Graphical Abstract
In good shape: By varying the amount of glycine present, the shape of Pt–Ni alloy nanocrystals could be tuned from concave nanocubes (CNCs) to nanocubes and hexoctahedra (HOHs; see picture). Glycine was used to manipulate the nucleation and growth rates of the Pt–Ni alloy NCs for the formation of CNCs by self-assembly and HOHs by control of crystal growth. Pt–Ni CNCs and HOHs showed excellent electrocatalytic properties. PVP=polyvinylpyrrolidone.
Abstract
The shape-controlled synthesis of multicomponent metal nanocrystals (NCs) bounded by high-index facets (HIFs) is of significant importance in the design and synthesis of high-activity catalysts. We report herein the preparation of Pt–Ni alloy NCs by tuning their shape from concave-nanocubic (CNC) to nanocubic and hexoctahedral (HOH). Owing to the synergy of the HIFs and the electronic effect of the Pt–Ni alloy, the as-prepared CNC and HOH Pt–Ni alloy NCs exhibited excellent catalytic properties for the electrooxidation of methanol and formic acid, as well as for the oxygen reduction reaction (ORR).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201406497_sm_miscellaneous_information.pdf3.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. S. Aricò, S. Srinivasan, V. Antonucci, Fuel Cells 2001, 1, 133–161;
- 1bV. D. Colle, V. Grozovski, E. Herrero, J. M. Feliu, ChemCatChem 2013, 5, 1350–1354.
- 2
- 2aY. Yu, H. L. Xin, R. Hovden, D. Wang, E. D. Rus, J. A. Mundy, D. A. Muller, H. D. Abruña, Nano Lett. 2012, 12, 4417–4423;
- 2bM. C. Orilall, F. Matsumoto, Q. Zhou, H. Sai, H. D. Abruña, F. J. DiSalvo, U. Wiesner, J. Am. Chem. Soc. 2009, 131, 9389–9393;
- 2cF. J. Vidal-Iglesias, J. Solla-Gullón, E. Herrero, A. Aldaz, J. M. Feliu, J. Appl. Electrochem. 2006, 36, 1207–1212.
- 3
- 3aY. Kang, C. B. Murray, J. Am. Chem. Soc. 2010, 132, 7568–7572;
- 3bD. S. Wang, Y. D. Li, Prog. Chem. 2013, 25, 1–7;
- 3cZ. C. Zhang, J. F. Hui, Z. G. Guo, Q. Y. Yu, B. Xu, X. Zhang, Z. C. Liu, C. M. Xu, J. S. Gao, X. Wang, Nanoscale 2012, 4, 2633–2639.
- 4
- 4aM. K. Carpenter, T. E. Moylan, R. S. Kukreja, M. H. Atwan, M. M. Tessema, J. Am. Chem. Soc. 2012, 134, 8535–8542;
- 4bF. Wang, C. Li, L. D. Sun, H. Wu, T. Ming, J. Wang, J. C. Yu, C. H. Yan, J. Am. Chem. Soc. 2011, 133, 1106–1111;
- 4cJ. Wu, J. Zhang, Z. Peng, S. Yang, F. T. Wagner, H. Yang, J. Am. Chem. Soc. 2010, 132, 4984–4988;
- 4dA. X. Yin, X. Q. Min, Y. W. Zhang, C. H. Yan, J. Am. Chem. Soc. 2011, 133, 3816–3819;
- 4eY. Yu, Q. Zhang, B. Liu, J. Y. Lee, J. Am. Chem. Soc. 2010, 132, 18258–18265;
- 4fL. Zhang, J. Zhang, Q. Kuang, S. Xie, Z. Jiang, Z. Xie, L. Zheng, J. Am. Chem. Soc. 2011, 133, 17114–17117;
- 4gZ. C. Zhang, J. F. Hui, Z. C. Liu, X. Zhang, J. Zhuang, X. Wang, Langmuir 2012, 28, 14845–14848;
- 4hY. G. Sun, Y. N. Xia, Science 2002, 298, 2176–2179;
- 4iN. Tian, Z. Y. Zhou, S. G. Sun, J. Phys. Chem. C 2008, 112, 19801–19817.
- 5
- 5aZ. Quan, Y. Wang, J. Fang, Acc. Chem. Res. 2013, 46, 191–203;
- 5bA. X. Yin, X. Q. Min, W. Zhu, W. C. Liu, Y. W. Zhang, C. H. Yan, Chem. Eur. J. 2012, 18, 777–782.
- 6
- 6aY. J. Deng, N. Tian, Z. Y. Zhou, R. Huang, Z. L. Liu, J. Xiao, S. G. Sun, Chem. Sci. 2012, 3, 1157–1161;
- 6bZ. Zhang, Y. Yang, F. Nosheen, P. Wang, J. Zhang, J. Zhuang, X. Wang, Small 2013, 9, 3063–3069.
- 7
- 7aN. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732–735;
- 7bX. Kou, W. Ni, C. K. Tsung, K. Chan, H. Q. Lin, G. D. Stucky, J. Wang, Small 2007, 3, 2103–2113;
- 7cT. Ming, W. Feng, Q. Tang, F. Wang, L. D. Sun, J. F. Wang, C. H. Yan, J. Am. Chem. Soc. 2009, 131, 16350–16354;
- 7dN. Tian, Z. Y. Zhou, N. F. Yu, L. Y. Wang, S. G. Sun, J. Am. Chem. Soc. 2010, 132, 7580–7584;
- 7eX. Huang, Z. Zhao, J. Fan, Y. Tan, N. Zheng, J. Am. Chem. Soc. 2011, 133, 4718–4721;
- 7fM. Jin, H. Zhang, Z. Xie, Y. Xia, Angew. Chem. Int. Ed. 2011, 50, 7850–7854; Angew. Chem. 2011, 123, 7996–8000;
- 7gX. Xia, J. Zeng, B. McDearmon, Y. Zheng, Q. Li, Y. Xia, Angew. Chem. Int. Ed. 2011, 50, 12542–12546; Angew. Chem. 2011, 123, 12750–12754;
- 7hT. T. Tran, X. M. Lu, J. Phys. Chem. C 2011, 115, 3638–3645;
- 7iY. Y. Li, Y. X. Jiang, M. H. Chen, H. G. Liao, R. Huang, Z. Y. Zhou, N. Tian, S. P. Chen, S. G. Sun, Chem. Commun. 2012, 48, 9531–9534;
- 7jJ. W. Hong, S. U. Lee, Y. W. Lee, S. W. Han, J. Am. Chem. Soc. 2012, 134, 4565–4568;
- 7kJ. Xiao, S. Liu, N. Tian, Z. Y. Zhou, H. X. Liu, B. B. Xu, S. G. Sun, J. Am. Chem. Soc. 2013, 135, 18754–18757.
- 8
- 8aY. Yu, Q. Zhang, X. Lu, J. Y. Lee, J. Phys. Chem. C 2010, 114, 11119–11126;
- 8bH. Zhang, M. Jin, J. Wang, M. J. Kim, D. Yang, Y. Xia, J. Am. Chem. Soc. 2011, 133, 10422–10425;
- 8cL. Zhang, W. Niu, Z. Li, G. Xu, Chem. Commun. 2011, 47, 10353;
- 8dC. L. Lu, K. S. Prasad, H. L. Wu, J. A. Ho, M. H. Huang, J. Am. Chem. Soc. 2010, 132, 14546–14549.
- 9
- 9aT. Yu, D. Y. Kim, H. Zhang, Y. Xia, Angew. Chem. Int. Ed. 2011, 50, 2773–2777; Angew. Chem. 2011, 123, 2825–2829;
- 9bJ. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Li, C. A. Mirkin, J. Am. Chem. Soc. 2010, 132, 14012–14014.
- 10
- 10aZ. Huo, O. K. Tsung, W. Huang, X. Zhang, P. Yang, Nano Lett. 2008, 8, 2041–2046;
- 10bH. You, S. Yang, B. Ding, H. Yang, Chem. Soc. Rev. 2013, 42, 2880–2904.
- 11B. Lim, X. Lu, M. Jiang, P. H. C. Camargo, E. C. Cho, E. P. Lee, Y. Xia, Nano Lett. 2008, 8, 4043–4047.
- 12
- 12aS. A. Jenekhe, X. L. Chen, Science 1998, 279, 1903–1907;
- 12bL. Wang, S. Cui, Z. Wang, X. Zhang, Langmuir 2000, 16, 10490–10494.
- 13
- 13aS. Trasatti, O. A. Petrii, Pure Appl. Chem. 1991, 63, 711–734;
- 13bM. Shao, J. H. Odeii, S.-I. Chai, Y. Xia, Electrochem. Commun. 2013, 31, 46–48.
- 14
- 14aV. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science 2007, 315, 493–497;
- 14bS. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H. C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, Y. Xia, Nano Lett. 2013, 13, 3420–3425;
- 14cC. Chen, Y. J. Kang, Z. Y. Huo, Z. W. Zhu, W. Y. Huang, H. L. L. Xin, J. D. Snyder, D. G. Li, J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. D. Li, N. M. Markovic, G. A. Somorjai, P. D. Yang, Science 2014, 343, 1339–1343.
Citing Literature
Special Issue:Nanotechnology & Nanomaterials, Nanotoxicology & Nanomedicine
November 10, 2014
Pages 12522-12527