Highly Stable, Water-Dispersible Metal-Nanoparticle-Decorated Polymer Nanocapsules and Their Catalytic Applications†
Gyeongwon Yun
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Zahid Hassan
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorJiyeong Lee
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorJeehong Kim
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Nam-Suk Lee
National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Nam Hoon Kim
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Kangkyun Baek
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Ilha Hwang
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorProf. Dr. Chan Gyung Park
National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Kimoon Kim
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea) http://csc.ibs.re.kr/
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)Search for more papers by this authorGyeongwon Yun
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Zahid Hassan
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorJiyeong Lee
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorJeehong Kim
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Nam-Suk Lee
National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Nam Hoon Kim
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Kangkyun Baek
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorDr. Ilha Hwang
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorProf. Dr. Chan Gyung Park
National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Kimoon Kim
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)
Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea)
Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 790-784 (Republic of Korea) http://csc.ibs.re.kr/
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 790-784 (Republic of Korea)Search for more papers by this authorThis work was supported by Institute for Basic Science (IBS) [CA1403].
Graphical Abstract
Desirable tailoring: Hollow polymer nanocapsules (PNs) made of cucurbit[6]uril (CB) serve as a versatile platform since various metal nanoparticles (NPs) can be introduced on the surface. They allow for a controlled synthesis, prevent self-aggregation, and provide high stability and dispersibility. Pd@CB-PNs show outstanding properties as heterogeneous catalysts in CC and CN bond-forming reactions in water.
Abstract
A facile synthesis of highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules (M@CB-PNs: M=Pd, Au, and Pt) was achieved by a simple two-step process employing a polymer nanocapsule (CB-PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB-PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water-dispersible nanostructures useful for many applications. The Pd nanoparticles on CB-PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon–carbon and carbon–nitrogen bond-forming reactions in aqueous medium suggesting potential applications as a green catalyst.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201403438_sm_miscellaneous_information.pdf1.7 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. L. Chng, N. Erathodiyil, J. Y. Ying, Acc. Chem. Res. 2013, 46, 1825–1837;
- 1bA. Balanta, C. Godard, C. Claver, Chem. Soc. Rev. 2011, 40, 4973–4985;
- 1cF. Caruso, T. Hyeon, V. M. Rotello, Chem. Soc. Rev. 2012, 41, 2537–2538;
- 1dT. L. Doane, C. Burda, Chem. Soc. Rev. 2012, 41, 2885–2911;
- 1eM.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293–346.
- 2
- 2aH. Weller, Angew. Chem. 1993, 105, 43–55; Angew. Chem. Int. Ed. Engl. 1993, 32, 41–53;
- 2bA. P. Alivisatos, Science 1996, 271, 933–937;
- 2cM. Nirmal, L. Brus, Acc. Chem. Res. 1999, 32, 407–414.
- 3
- 3aA. C. Balazs, T. Emrick, T. P. Russell, Science 2006, 314, 1107–1110;
- 3bD. Ghosh, Y. Lee, S. Thomas, A. G. Kohil, D. S. Yun, A. M. Belcher, K. A. Kelly, Nat. Nanotechnol. 2012, 7, 677–682.
- 4M. A. Newton, Chem. Soc. Rev. 2008, 37, 2644–2657.
- 5
- 5aY. Li, E. Boone, M. A. El-Sayed, Langmuir 2002, 18, 4921–4925;
- 5bT. Teranishi, M. Miyake, Chem. Mater. 1998, 10, 594–600;
- 5cR. Narayanan, M. A. El-Sayed, J. Am. Chem. Soc. 2003, 125, 8340–8347;
- 5dR. Najman, J. K. Cho, A. F. Coffey, J. W. Davies, M. Bradley, Chem. Commun. 2007, 5031–5033.
- 6
- 6aR. M. Crooks, M. Zhao, L. Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res. 2001, 34, 181–190;
- 6bK. R. Gopidas, J. K. Whitesell, M. A. Fox, Nano Lett. 2003, 3, 1757–1760.
- 7
- 7aZ. Chen, Z.-M. Cui, F. Niu, L. Jiang, W.-G. Song, Chem. Commun. 2010, 46, 6524–6526;
- 7bD. D. Das, A. Sayari, J. Catal. 2007, 246, 60–65;
- 7cP. Han, X. Wang, X. Qiu, X. Ji, L. Gao, J. Mol. Catal. A 2007, 272, 136–141.
- 8
- 8aA. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science 2008, 321, 1331–1335;
- 8bT. Akita, M. Kohyama, M. Haruta, Acc. Chem. Res. 2013, 46, 1773–1782.
- 9P. J. Ellis, I. J. S. Fairlamb, S. F. J. Hackett, K. Wilson, A. F. Lee, Angew. Chem. 2010, 122, 1864–1868;
10.1002/ange.200906675 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 1820–1824.
- 10J. Sehested, J. Catal. 2003, 217, 417–426.
- 11D. Segets, R. Marczak, S. Schäfer, C. Paula, J.-F. Gnichwitz, A. Hirsch, W. Peukert, ACS Nano 2011, 6, 4658–4669.
- 12
- 12aR. B. Bedford, U. G. Singh, R. I. Walton, R. T. Williams, S. A. Davis, Chem. Mater. 2005, 17, 701–707;
- 12bS. Saffarzadeh-Matin, F. M. Kerton, J. M. Lynam, C. M. Rayner, Green Chem. 2006, 8, 965–971;
- 12cG. Budroni, A. Corma, H. Garci, A. Primo, J. Catal. 2007, 251, 345–353;
- 12dZ. Zheng, H. Li, T. Liu, R. Cao, J. Catal. 2010, 270, 268–274.
- 13A. Fihri, M. Bouhrara, B. Nekoueishahraki, J. M. Basset, V. Polshettiwar, Chem. Soc. Rev. 2011, 40, 5181–5203.
- 14S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless, Angew. Chem. 2005, 117, 3339–3343; Angew. Chem. Int. Ed. 2005, 44, 3275–3279.
- 15M. Lakshmi Kantam, S. Roy, M. Roy, B. Sreedhar, B. M. Choudary, Adv. Synth. Catal. 2005, 347, 2002–2008, and references therein.
- 16
- 16aW. L. Mock, Top. Curr. Chem. 1995, 175, 1–24;
- 16bJ. W. Lee, S. Samal, N. Selvapalam, H.-J. Kim, K. Kim, Acc. Chem. Res. 2003, 36, 621–630;
- 16cJ. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. 2005, 117, 4922–4949;
10.1002/ange.200460675 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 4844–4870;
- 16dE. Masson, X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Lu, RSC Adv. 2012, 2, 1213–1247;
- 16eX.-L. Ni, X. Xiao, H. Cong, L.-L. Liang, K. Cheng, X.-J. Cheng, N.-N. Ji, Q.-J. Zhu, S.-F. Xue, Z. Tao, Chem. Soc. Rev. 2013, 42, 9480–9508.
- 17
- 17aT.-C. Lee, O. A. Scherman, Chem. Commun. 2010, 46, 2438–2440;
- 17bM. Cao, J. Lin, H. Yang, R. Cao, Chem. Commun. 2010, 46, 5088–5090;
- 17cX. Lu, E. Masson, Langmuir 2011, 27, 3051–3058;
- 17dT. C. Lee, O. A. Scherman, Chem. Eur. J. 2012, 18, 1628–1633;
- 17eM. Cao, D. Wu, S. Gao, R. Cao, Chem. Eur. J. 2012, 18, 12978–12985.
- 18
- 18aD. Kim, E. Kim, J. Kim, K. M. Park, K. Baek, M. Jung, Y. H. Ko, W. Sung, H. S. Kim, J. H. Suh, C. G. Park, O. S. Na, D.-k. Lee, K. E. Lee, S. S. Han, K. Kim, Angew. Chem. 2007, 119, 3541–3544; Angew. Chem. Int. Ed. 2007, 46, 3471–3474;
- 18bD. Kim, E. Kim, J. Lee, S. Hong, W. Sung, N. Lim, C. G. Park, K. Kim, J. Am. Chem. Soc. 2010, 132, 9908–9919;
- 18cE. Kim, D. Kim, H. Jung, J. Lee, S. Paul, N. Selvapalam, Y. Yang, N. Lim, C. G. Park, K. Kim, Angew. Chem. 2010, 122, 4507–4510; Angew. Chem. Int. Ed. 2010, 49, 4405–4408;
- 18dD. W. Kuykendall, S. C. Zimmerman, Nat. Nanotechnol. 2007, 2, 201–202.
- 19E. Kim, J. Lee, D. Kim, K. E. Lee, S. S. Han, N. Lim, J. Kang, C. G. Park, K. Kim, Chem. Commun. 2009, 1472–1474.
- 20
- 20aR. Hota, K. Baek, G. Yun, Y. Kim, H. Jung, K. M. Park, E. Yoon, T. Joo, J. Kang, C. G. Park, S. M. Bae, W. S. Ahn, K. Kim, Chem. Sci. 2013, 4, 339–344;
- 20bR. W. Bost, J. E. Everett, J. Am. Chem. Soc. 1940, 62, 1752–1754.
- 21J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103–1169.
- 22Q. An, G. Li, C. Tao, Y. Li, Y. Wu, W. Zhang, Chem. Commun. 2008, 1989–1991.
- 23J. C. Love, D. B. Wolfe, R. Haasch, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, R. G. Nuzzo, J. Am. Chem. Soc. 2003, 125, 2597–2609.
- 24
- 24aY. Li, M. E. El-Sayed, J. Phys. Chem. B 2001, 105, 8938–8943;
- 24bN. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437–3440.
- 25
- 25aA. Corma, H. García, Chem. Soc. Rev. 2008, 37, 2096–2126;
- 25bN. Mejías, A. Serra-Muns, R. Pleixats, A. Shafir, M. Tristany, Dalton Trans. 2009, 7748–7755;
- 25cN. Mejías, R. Pleixats, A. Shafir, M. Medio-Simon, G. Asensio, Eur. J. Org. Chem. 2010, 26, 5090–5099.
- 26
- 26aJ. F. Hartwig, Pure Appl. Chem. 1999, 71, 1417–1423;
- 26bJ. P. Wolfe, S. Wagaw, J. F. Marcoux, S. L. Buchwald, Acc. Chem. Res. 1998, 31, 805–818;
- 26cJ. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534–1544.