Exceptional Poly(acrylic acid)-Based Artificial [FeFe]-Hydrogenases for Photocatalytic H2 Production in Water†
Feng Wang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorWen-Jing Liang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorJing-Xin Jian
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorCheng-Bo Li
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorDr. Bin Chen
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorProf. Dr. Chen-Ho Tung
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Li-Zhu Wu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)Search for more papers by this authorFeng Wang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorWen-Jing Liang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorJing-Xin Jian
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorCheng-Bo Li
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorDr. Bin Chen
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorProf. Dr. Chen-Ho Tung
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Li-Zhu Wu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190 (P.R. China)Search for more papers by this authorWe are grateful for financial support from the Ministry of Science and Technology of China (2009CB220008, 2013CB834505 and 2013CB834804), the National Science Foundation of China (21090343, 50973125 and 91027041), and the Knowledge Innovation Program of the Chinese Academy of Sciences.
Graphical Abstract
Light, polymer, action: A set of water-soluble poly(acrylic acid) catalysts PAA-g-Fe2S2 containing {Fe2S2}, an [FeFe]-hydrogenase active-site mimic, is synthesized. This system, combined with CdSe quantum dots and ascorbic acid, has an exceptional turnover number and initial turnover frequency (27 135 and 3.6 s−1) for the photocatalytic production of H2 in water, which is the highest efficiency to date for [FeFe]-hydrogenase mimics.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201303110_sm_miscellaneous_information.pdf363.6 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. B. Gray, Nat. Chem. 2009, 1, 7.
- 2A. J. Esswein, D. G. Nocera, Chem. Rev. 2007, 107, 4022–4047.
- 3J. M. Camara, T. B. Rauchfuss, Nat. Chem. 2012, 4, 26–30.
- 4M. Frey, ChemBioChem 2002, 3, 153–160.
10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 5J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 2007, 107, 4273–4303.
- 6M. L. Ghirardi, A. Dubini, J. Yu, P.-C. Maness, Chem. Soc. Rev. 2009, 38, 52–61.
- 7M. W. W. Adams, E. I. Stiefel, Science 1998, 282, 1842–1843.
- 8R. Cammack, Nature 1999, 397, 214–215.
- 9F. Gloaguen, T. B. Rauchfuss, Chem. Soc. Rev. 2009, 38, 100–108.
- 10C. Tard, C. J. Pickett, Chem. Rev. 2009, 109, 2245–2274.
- 11G. A. N. Felton, C. A. Mebi, B. J. Petro, A. K. Vannucci, D. H. Evans, R. S. Glass, D. L. Lichtenberger, J. Organomet. Chem. 2009, 694, 2681–2699.
- 12F. Wang, W.-G. Wang, H.-Y. Wang, G. Si, C.-H. Tung, L.-Z. Wu, ACS Catal. 2012, 2, 407–416.
- 13L. Wang, Z. Xiao, X. Ru, X. Liu, RSC Adv. 2011, 1, 1211–1219.
- 14S. Ibrahim, P. M. Woi, Y. Alias, C. J. Pickett, Chem. Commun. 2010, 46, 8189–8191.
- 15C. Zhan, X. Wang, Z. Wei, D. J. Evans, X. Ru, X. Zeng, X. Liu, Dalton Trans. 2010, 39, 11255–11262.
- 16M. L. Singleton, J. H. Reibenspies, M. Y. Darensbourg, J. Am. Chem. Soc. 2010, 132, 8870–8871.
- 17M. L. Singleton, D. J. Crouthers, R. P. Duttweiler III, J. H. Reibenspies, M. Y. Darensbourg, Inorg. Chem. 2011, 50, 5015–5026.
- 18M. K. Harb, U.-P. Apfel, J. Kübel, H. Görls, G. A. N. Felton, T. Sakamoto, D. H. Evans, R. S. Glass, D. L. Lichtenberger, M. El-khateeb, W. Weigand, Organometallics 2009, 28, 6666–6675.
- 19M. K. Harb, U.-P. Apfel, J. Kübel, H. Görls, G. A. N. Felton, T. Sakamoto, D. H. Evans, R. S. Glass, D. L. Lichtenberger, M. El-khateeb, W. Weigand, Organometallics 2010, 29, 5330–5340.
- 20W.-G. Wang, F. Wang, H.-Y. Wang, G. Si, C.-H. Tung, L.-Z. Wu, Chem. Asian J. 2010, 5, 1796–1803.
- 21A. P. S. Samuel, D. T. Co, C. L. Stern, M. R. Wasielewski, J. Am. Chem. Soc. 2010, 132, 8813–8815.
- 22W.-G. Wang, F. Wang, H.-Y. Wang, C.-H. Tung, L.-Z. Wu, Dalton Trans. 2012, 41, 2420–2426.
- 23H. Cui, M. Hu, H. Wen, G. Chai, C. Ma, H. Chen, C. Chen, Dalton Trans. 2012, 41, 13899–13907.
- 24H.-Y. Wang, G. Si, W.-N. Cao, W.-G. Wang, Z.-J. Li, F. Wang, C.-H. Tung, L.-Z. Wu, Chem. Commun. 2011, 47, 8406–8408.
- 25P. Poddutoori, D. T. Co, A. P. S. Samuel, C. H. Kim, M. T. Vagnini, M. R. Wasielewski, Energy Environ. Sci. 2011, 4, 2441–2450.
- 26Y. Na, M. Wang, J. Pan, P. Zhang, B. Åkermark, L. Sun, Inorg. Chem. 2008, 47, 2805–2810.
- 27D. Streich, Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarström, S. Ott, Chem. Eur. J. 2010, 16, 60–63.
- 28P. Zhang, M. Wang, Y. Na, X. Li, Y. Jiang, L. Sun, Dalton Trans. 2010, 39, 1204–1206.
- 29F. Wang, W.-G. Wang, X.-J. Wang, H.-Y. Wang, C.-H. Tung, L.-Z. Wu, Angew. Chem. 2011, 123, 3251–3255; Angew. Chem. Int. Ed. 2011, 50, 3193–3197.
- 30W.-N. Cao, F. Wang, H.-Y. Wang, B. Chen, K. Feng, C.-H. Tung, L.-Z. Wu, Chem. Commun. 2012, 48, 8081–8083.
- 31Y. Sano, A. Onoda, T. Hayashi, Chem. Commun. 2011, 47, 8229–8231.
- 32A. Roy, C. Madden, G. Ghirlanda, Chem. Commun. 2012, 48, 9816–9818.
- 33X. Li, M. Wang, D. Zheng, K. Han, J. Dong, L. Sun, Energy Environ. Sci. 2012, 5, 8220–8224.
- 34X. Li, M. Wang, L. Chen, X. Wang, J. Dong, L. Sun, ChemSusChem 2012, 5, 913–919.
- 35A. M. Kluwer, R. Kapre, F. Hartl, M. Lutz, A. L. Spek, A. M. Brouwer, P. W. N. M. van Leeuwen, J. N. H. Reek, Proc. Natl. Acad. Sci. USA 2009, 106, 10460–10465.
- 36H.-Y. Wang, W.-G. Wang, G. Si, F. Wang, C.-H. Tung, L.-Z. Wu, Langmuir 2010, 26, 9766–9771.
- 37F. Wen, X. Wang, L. Huang, G. Ma, J. Yang, C. Li, ChemSusChem 2012, 5, 849–853.
- 38T. W. Woolerton, S. Sheard, Y. S. Chaudhary, F. A. Armstrong, Energy Environ. Sci. 2012, 5, 7470–7490.
- 39R. Lomoth, S. Ott, Dalton Trans. 2009, 9952–9959.
- 40N. Agmon, Chem. Phys. Lett. 1995, 244, 456–462.
- 41D. Marx, M. E. Tuckerman, J. Hutter, M. Parrinello, Nature 1999, 397, 601–604.
- 42I. Tomatsu, A. Hashidzume, A. Harada, J. Am. Chem. Soc. 2006, 128, 2226–2227.
- 43M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511–516.
- 44Z. Shen, H. Duan, H. Frey, Adv. Mater. 2007, 19, 349–352.
- 45C. Zhai, H. Zhang, N. Du, B. Chen, H. Huang, Y. Wu, D. Yang, Nanoscale Res. Lett. 2011, 6, 31–35.
- 46D. R. Baker, P. V. Kamat, Langmuir 2010, 26, 11272–11276.
- 47H. Zhang, Z. Zhou, B. Yang, M. Gao, J. Phys. Chem. B 2003, 107, 8–13.
- 48J. C. Benegas, R. F. M. J. Cleven, M. A. G. T. van den Hoop, Anal. Chim. Acta 1998, 369, 109–114.
- 49S. J. Borg, T. Behrsing, S. P. Best, M. Razavet, X. Liu, C. J. Pickett, J. Am. Chem. Soc. 2004, 126, 16988–16999.
- 50D. Chong, I. P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-Chinchilla, M. P. Soriaga, M. Y. Darensbourg, Dalton Trans. 2003, 4158–4163.
- 51R. Mejia-Rodriguez, D. Chong, J. H. Reibenspies, M. P. Soriaga, M. Y. Darensbourg, J. Am. Chem. Soc. 2004, 126, 12004–12014.
- 52F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, J. Am. Chem. Soc. 2001, 123, 9476–9477.
- 53A. B. Ellis, S. W. Kaiser, J. M. Bolts, M. S. Wrighton, J. Am. Chem. Soc. 1977, 99, 2839–2848.
- 54H. Davenport, C. Jeffreys, R. Warner, J. Biol. Chem. 1937, 117, 237–279.
- 55J. Aldana, Y. A. Wang, X. Peng, J. Am. Chem. Soc. 2001, 123, 8844–8850.