Single Nanoscale Cluster Species Revealed by 1H NMR Diffusion-Ordered Spectroscopy and Small-Angle X-ray Scattering†
Anna F. Oliveri
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Search for more papers by this authorMatthew E. Carnes
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Search for more papers by this authorMatthew M. Baseman
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Search for more papers by this authorErik K. Richman
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Search for more papers by this authorCorresponding Author
Prof. Dr. James E. Hutchison
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchisonhttp://pages.uoregon.edu/dwjlab/home.htmlSearch for more papers by this authorCorresponding Author
Prof. Dr. Darren W. Johnson
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchisonhttp://pages.uoregon.edu/dwjlab/home.htmlSearch for more papers by this authorAnna F. Oliveri
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Search for more papers by this authorMatthew E. Carnes
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Search for more papers by this authorMatthew M. Baseman
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Search for more papers by this authorErik K. Richman
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Search for more papers by this authorCorresponding Author
Prof. Dr. James E. Hutchison
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchisonhttp://pages.uoregon.edu/dwjlab/home.htmlSearch for more papers by this authorCorresponding Author
Prof. Dr. Darren W. Johnson
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchison http://pages.uoregon.edu/dwjlab/home.html
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253 (USA) http://hutchlab.uoregon.edu/people/hutchisonhttp://pages.uoregon.edu/dwjlab/home.htmlSearch for more papers by this authorThis work was generously supported by the NSF Center for Sustainable Materials Chemistry (grant numbers CHE-0847926 and CHE-1102637), an NSF GK12 fellowship to A.F.O. (DGE-0742540), the Air Force Research Laboratory (under grant number FA8650-05-1-5041) and the M. J. Murdock Charitable Trust. The authors thank Profs. Douglas A. Keszler and Sophia E. Hayes for helpful suggestions in writing this manuscript. The University of Oregon NMR facilities are supported by NSF CHE-0923589. D.W.J. is a Scialog Fellow of Research Corporation for Science Advancement and gratefully acknowledges additional support provided to assist this project.
Graphical Abstract
A solved structure: The hydrated Ga13 cluster, [Ga13(μ3-OH)6(μ-OH)18(H2O)24](NO3)15], persists as a discrete nanoscale structure in an aqueous polar solvent at millimolar concentration. SAXS data confirm the presence of Ga13 in dimethyl sulfoxide (DMSO). In aqueous [D6]DMSO 1H NMR signals for the hydroxo and aquo ligands of Ga13 were detected, thus showing a cluster with a hydrodynamic radius of (11.2±0.8) Å (see picture).
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
anie_201206386_sm_miscellaneous_information.pdf860.5 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Alivisatos, P. F. Barbara, A. W. Castleman, J. Chang, D. A. Dixon, M. L. Klein, G. L. McLendon, J. S. Miller, M. A. Ratner, P. J. Rossky, S. I. Stupp, M. E. Thompson, Adv. Mater. 1998, 10, 1297–1336.
- 2T. M. Anderson, W. A. Neiwert, M. L. Kirk, P. M. B. Piccoli, J. Schultz, T. F. Koetzle, D. G. Musaev, K. Morokuma, R. Cao, C. L. Hill, Science 2004, 306, 2074–2077.
- 3Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342–345.
- 4M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072–1075.
- 5H. I. Karunadasa, C. J. Chang, J. R. Long, Nature 2010, 464, 1329–1333.
- 6J. G. McAlpin, Y. Surendranath, M. Dinca, T. A. Stich, S. A. Stoian, W. H. Casey, D. G. Nocera, R. D. Britt, J. Am. Chem. Soc. 2010, 132, 6882–6883.
- 7T. C. Stamatatos, S. J. Teat, W. Wernsdorfer, G. Christou, Angew. Chem. 2009, 121, 529–532;
10.1002/ange.200804286 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 521–524.
- 8S. Hill, R. S. Edwards, N. Aliaga-Alcalde, G. Christou, Science 2003, 302, 1015–8.
- 9S. Schneider, A. Dzudza, G. Raudaschl-Sieber, T. J. Marks, J. Chem. Mater. 2007, 19, 2768–2779.
- 10W. H. Casey, Chem. Rev. 2006, 106, 1–16.
- 11Z. L. Mensinger, J. T. Gatlin, S. T. Meyers, L. N. Zakharov, D. A. Keszler, D. W. Johnson, Angew. Chem. 2008, 120, 9626–9628;
10.1002/ange.200803514 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 9484–9486.
- 12Ga13 has been previously reported and characterized in the solid state and bulk in: E. Rather, J. T. Gatlin, P. G. Nixon, T. Tsukamoto, V. Kravtsov, D. W. Johnson, J. Am. Chem. Soc. 2005, 127, 3242–3243.
- 13J. T. Gatlin, Z. L. Mensinger, L. N. Zakharov, D. Macinnes, D. W. Johnson, Inorg. Chem. 2008, 47, 1267–1269.
- 14W. Wang, K. M. Wentz, S. E. Hayes, D. W. Johnson, D. A. Keszler, Inorg. Chem. 2011, 50, 9–11.
- 15K. Jiang, J. T. Anderson, K. Hoshino, D. Li, J. F. Wager, D. A. Keszler, Chem. Mater. 2011, 23, 945–952.
- 16J. Ling, J. Qiu, G. E. Sigmon, M. Ward, J. E. S. Szymanowski, P. C. Burns, J. Am. Chem. Soc. 2010, 132, 13395–13402.
- 17G. N. Greaves, S. Sen, Adv. Phys. 2007, 56, 1–166.
- 18B. Gilbert, G. Lu, C. S. Kim, J. Colloid Interface Sci. 2007, 313, 152–159.
- 19At typical ESI-MS concentrations, these clusters fragment (or perhaps dissociate prior to ionization) readily, leading to complex spectra. We are currently analyzing high-resolution ESI-MS data to determine if cluster species can be characterized by this technique; these data will be reported in due course, but it suffices to say that for this system, ESI-MS does not appear to be a rapid/high-throughput characterization method.
- 20
- 20aC. A. Ohlin, Chem. Asian J. 2012, 7, 262–270;
- 20bC. P. Pradeep, F.-Y. Li, C. Lydon, H. N. Miras, D.-L. Long, L. Xu, L. Cronin, Chem. Eur. J. 2011, 17, 7472–7479.
- 21J. A. Potton, G. J. Daniell, B. D. Rainford, J. Appl. Crystallogr. 1988, 21, 663–668.
- 22J. Ilacsky, P. R. Jemian, J. Appl. Crystallogr. 2009, 42, 347–353.
- 23J. W. Akitt, J. M. Elders, J. Chem. Soc. Dalton Trans. 1988, 1347–1355.
- 24W. G. Jackson, J. A. McKeon, M. Zehnder, M. Neuberger, S. Fallab, Chem. Commun. 2004, 6, 2322–2323.
- 25M. Åberg, J. Glaser, Inorg. Chim. Acta 1993, 206, 53–61.
- 26J.-F. Lemonnier, S. Duval, S. Floquet, E. Cadot, Isr. J. Chem. 2011, 51, 290–302.
- 27F. Périneau, S. Pensec, C. Sassoye, F. Ribot, L. van Lokeren, R. Willem, L. Bouteiller, C. Sanchez, L. Rozes, J. Mater. Chem. 2011, 21, 4470–4475.
- 28The relationship between rate of exchange and the diffusion period at which the DOSY data is collected can impact the diffusion coefficient of each exchangeable proton on the observed species. If a proton behaves more “clusterlike” over the diffusion time, the diffusion coefficient associated with the peak in question will be more clusterlike in character and hence shifted towards the peak in question (e.g., the cluster). If the proton is acting more “waterlike” the diffusion coefficient will shift closer to water. The degree of this shift depends on the rate of exchange. Protons on the cluster that are in faster exchange will appear to have larger diffusion coefficients, which causes a large spread in the measured cluster diffusion coefficents, and hence, hydrodynamic radii. For a detailed discussion in the context of the DOSY spectra of sucrose, see: E. J. Cabrita, S. Berger, Magn. Reson. Chem. 2002, 40, S 122–S127.
- 29aAlternately, data refinement, processing, and peak overlap can result in a scattering of diffusion coefficients: T. D. W. Claridge, High-Resolution NMR Techniques in Organic Chemistry, 2nd ed., Elsevier, Oxford, 2009, pp. 303–334. Methods for smoothing this artifact can be found in:
10.1016/S1460-1567(08)10009-5 Google ScholarR. C. O. Sebastião, C. N. Pacheco, J. P. Braga, D. J. Piló-Veloso, Mag. Res. 2006, 182, 22–28;
- 29bAlthough the Ga13 cluster exhibits a disklike shape in the crystal structure shown in Figure 1, the counterions are also considered to be part of the diffusing species in solution, which makes this diffusing species closer to spherical. The Einstein-Stokes Equation (1) assumes a spherical species and can therefore be used to predict an approximate species size in this limit. A recent related example has shown that ligand-substituted polyoxometallate anions can be modeled using this approximation (see Ref. [26]); it stands to reason that aqueous cluster cations can also be approximated similarly and the SAXS data support this assertion.
- 30The diffusion coefficients produced by DOSY on the Varian 500 MHz NMR spectrometer were calibrated using a method similar to the one found in: M. D. Pluth, B. E. F. Tiedemann, H. van Halbeek, R. Nunlist, K. N. Raymond, Inorg. Chem. 2008, 47, 1411–1413. The diffusion coefficient of a known standard, β-cylcodextrin (D=3.224×10−10 m2 s−1) in D2O, was used as a reference for calibration: L. G. Longsworth, J. Phys. Chem. 1954, 58, 770.
- 31M. E. Zielinski, K. F. Morris, Magn. Reson. Chem. 2009, 47, 53–56.
- 32Z. L. Mensinger, M. K. Kamunde-Devonish, S. A. Betterton, M. M. Baseman, L. N. Zakharov, J. T. Gatlin, D. A. Keszler, D. W. Johnson, Preparation of a Series of Heteromentallic Aqueous Tridecameric Clusters. Manuscript in Progress.