Observation of Electrochemically Controlled Quantum Interference in a Single Anthraquinone-Based Norbornylogous Bridge Molecule†
Dr. Nadim Darwish
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorDr. Ismael Díez-Pérez
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
Department of Physical Chemistry, University of Barcelona, Barcelona 08028 (Spain)
Search for more papers by this authorDr. Paulo Da Silva
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorCorresponding Author
Prof. Dr. Nongjian Tao
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
Nongjian Tao, Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
J. Justin Gooding, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Michael N. Paddon-Row, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorCorresponding Author
Prof. Dr. J. Justin Gooding
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Nongjian Tao, Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
J. Justin Gooding, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Michael N. Paddon-Row, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorCorresponding Author
Prof. Dr. Michael N. Paddon-Row
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Nongjian Tao, Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
J. Justin Gooding, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Michael N. Paddon-Row, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorDr. Nadim Darwish
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorDr. Ismael Díez-Pérez
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
Department of Physical Chemistry, University of Barcelona, Barcelona 08028 (Spain)
Search for more papers by this authorDr. Paulo Da Silva
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorCorresponding Author
Prof. Dr. Nongjian Tao
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
Nongjian Tao, Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
J. Justin Gooding, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Michael N. Paddon-Row, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorCorresponding Author
Prof. Dr. J. Justin Gooding
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Nongjian Tao, Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
J. Justin Gooding, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Michael N. Paddon-Row, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorCorresponding Author
Prof. Dr. Michael N. Paddon-Row
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Nongjian Tao, Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 6206 (USA)
J. Justin Gooding, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Michael N. Paddon-Row, School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 (Australia)
Search for more papers by this authorJ.J.G. and M.P.-R. thank the Australian research council for support. Dr. Erwann Luais is acknowledged for the X-ray photoelectron spectroscopy experiments. Dr. Mohan Bhadbhade and Australian Synchrotron are acknowledged for their technical support. N.T. thanks the National Science Foundation (CHE-1105588) for support.
Graphical Abstract
A single-molecular switch based on the anthraquinone/hydroanthraquinone redox reaction is reported (see picture). A single norbornyl anthraquinone unit can be switched between a low-conducting and a high-conducting form using electrochemical gating. The potential range, upon which the conductance enhancement is observed, can be varied using different pH values of the electrolyte.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
anie_201107765_sm_miscellaneous_information.pdf1.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Zhang, A. M. Kuznetsov, I. G. Medvedev, Q. Chi, T. Albrecht, P. S. Jensen, J. Ulstrup, Chem. Rev. 2008, 108, 2737–2791.
- 2N. J. Tao, Nat. Nanotechnol. 2006, 1, 173–181.
- 3I. Diez-Perez, J. Hihath, T. Hines, Z.-S. Wang, G. Zhou, K. Mullen, N. Tao, Nat. Nanotechnol. 2011, 6, 226–231.
- 4T. Hines, I. Diez-Perez, J. Hihath, H. Liu, Z.-S. Wang, J. Zhao, G. Zhou, K. Müllen, N. Tao, J. Am. Chem. Soc. 2010, 132, 11658–11664.
- 5E. H. van Dijk, D. J. T. Myles, M. H. van der Veen, J. C. Hummelen, Org. Lett. 2006, 8, 2333–2336.
- 6T. Markussen, J. Schiotz, K. Thygesen, J. Chem. Phys. 2010, 132, 224104.
- 7D. Fracasso, H. Valkenier, J. C. Hummelen, G. C. Solomon, R. C. Chiechi, J. Am. Chem. Soc. 2011, 133, 9556–9563.
- 8B. Xu, N. J. Tao, Science 2003, 301, 1221–1223.
- 9F. Chen, N. J. Tao, Acc. Chem. Res. 2009, 42, 429–438.
- 10M. N. Paddon-Row, Acc. Chem. Res. 1994, 27, 18–25.
- 11M. N. Paddon-Row in Electron Transfer in Chemistry, Vol. 3 (Ed.: ), Wiley-VCH, Weinheim, 2001, Part 2, chap. 1, p. 179.
- 12T. T. Wooster, P. R. Gamm, W. E. Geiger, A. M. Oliver, A. J. Black, D. C. Craig, M. N. Paddon-Row, Langmuir 1996, 12, 6616–6626.
- 13J. M. Beebe, V. B. Engelkes, J. Liu, J. J. Gooding, P. K. Eggers, Y. Jun, X. Zhu, M. N. Paddon-Row, C. D. Frisbie, J. Phys. Chem. B 2005, 109, 5207–5215.
- 14W. R. Yang, M. W. Jones, X. Li, P. K. Eggers, N. Tao, J. J. Gooding, M. N. Paddon-Row, J. Phys. Chem. C 2008, 112, 9072–9080.
- 15P. K. Eggers, H. M. Zareie, M. N. Paddon-Row, J. J. Gooding, Langmuir 2009, 25, 11090–11096.
- 16P. K. Eggers, P. Da Silva, N. A. Darwish, Y. Zhang, Y. Tong, S. Ye, M. N. Paddon-Row, J. J. Gooding, Langmuir 2010, 26, 15665–15670.
- 17S. A. Trammell, D. A. Lowy, D. S. Seferos, M. Moore, G. C. Bazan, N. Lebedev, Electroanal. Chem. 2007, 606, 33–38.
- 18H.-G. Hong, W. Park, Langmuir 2001, 17, 2485–2492.
- 19N. Darwish, P. Eggers, P. Silva, Y. Zhang, Y. Tong, S. Ye, J. Gooding, M. N. Paddon-Row, Chem. Eur. J. 2012, 18, 283–292.