Sodium Doping Controlled Synthesis of Monodisperse Lanthanide Oxysulfide Ultrathin Nanoplates Guided by Density Functional Calculations†
Correction(s) for this article
-
Corrigendum: Sodium Doping Controlled Synthesis of Monodisperse Lanthanide Oxysulfide Ultrathin Nanoplates Guided by Density Functional Calculations
- Volume 51Issue 34Angewandte Chemie International Edition
- pages: 8413-8413
- First Published online: August 14, 2012
Yi Ding
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Search for more papers by this authorJun Gu
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Search for more papers by this authorJun Ke
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Search for more papers by this authorCorresponding Author
Prof. Ya-Wen Zhang
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 ChinaSearch for more papers by this authorCorresponding Author
Prof. Chun-Hua Yan
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 ChinaSearch for more papers by this authorYi Ding
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Search for more papers by this authorJun Gu
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Search for more papers by this authorJun Ke
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Search for more papers by this authorCorresponding Author
Prof. Ya-Wen Zhang
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 ChinaSearch for more papers by this authorCorresponding Author
Prof. Chun-Hua Yan
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 China
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 ChinaSearch for more papers by this authorThis work was supported by the NSFC (grant nos. 21025101, 20871006, and 20221101). Y.W.Z. particularly appreciates the financial aid of China National Funds for Distinguished Young Scientists from the NSFC. The authors also acknowledge the help in theoretical calculation from Dr. Jun Jiang and Dr. Rui Qin of Peking University.
Graphical Abstract
Dopant-induced phenomena: Doping with sodium ions can stimulate the formation of monodisperse ultrathin La2O2S nanoplates with tunable self-assembled superstructures (see picture) and robust fluorescence in surfactant solutions by creating oxygen vacancies in the host lattice during sulfurization reactions.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
anie_201105025_sm_miscellaneous_information.pdf1.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. H. Du, S. C. Erwin, A. L. Efros, Nano Lett. 2008, 8, 2878;
- 1bS. C. Erwin, L. J. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, D. J. Norris, Nature 2005, 436, 91;
- 1cD. J. Norris, A. L. Efros, S. C. Erwin, Science 2008, 319, 1776;
- 1dF. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, X. G. Liu, Nature 2010, 463, 1061;
- 1eY. F. Yang, Y. Z. Jin, H. P. He, Q. L. Wang, Y. Tu, H. M. Lu, Z. Z. Ye, J. Am. Chem. Soc. 2010, 132, 13381;
- 1fF. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, M. G. Bawendi, J. Am. Chem. Soc. 2000, 122, 2532;
- 1gD. A. Chen, R. Viswanatha, G. L. Ong, R. G. Xie, M. Balasubramaninan, X. G. Peng, J. Am. Chem. Soc. 2009, 131, 9333;
- 1hD. Q. Chen, Y. L. Yu, F. Huang, P. Huang, A. P. Yang, Y. S. Wang, J. Am. Chem. Soc. 2010, 132, 9976.
- 2
- 2aG. F. Wang, Q. Peng, Y. D. Li, Acc. Chem. Res. 2011, 44, 322;
- 2bJ. C. G. Bünzli, Chem. Rev. 2010, 110, 2729;
- 2cF. Wang, X. G. Liu, Chem. Soc. Rev. 2009, 38, 976;
- 2dW. Feng, L. D. Sun, Y. W. Zhang, C. H. Yan, Coord. Chem. Rev. 2010, 254, 1038.
- 3
- 3aF. Wang, X. J. Xue, X. G. Liu, Angew. Chem. 2008, 120, 920–923; Angew. Chem. Int. Ed. 2008, 47, 906–909;
- 3bX. C. Ye, J. E. Collins, Y. J. Kang, J. Chen, D. T. N. Chen, A. G. Yodh, C. B. Murray, Proc. Natl. Acad. Sci. USA 2010, 107, 22430;
- 3cS. Sivakumar, F. C. J. M. van Veggel, M. Raudsepp, J. Am. Chem. Soc. 2005, 127, 12464;
- 3dJ. C. Boyer, F. Vetrone, L. A. Cuccia, J. A. Capobianco, J. Am. Chem. Soc. 2006, 128, 7444;
- 3eR. Si, Y. W. Zhang, L. P. You, C. H. Yan, Angew. Chem. 2005, 117, 3320; Angew. Chem. Int. Ed. 2005, 44, 3256.
- 4
- 4aF. Zhao, M. Yuan, W. Zhang, S. Gao, J. Am. Chem. Soc. 2006, 128, 11758;
- 4bH. S. Peng, S. H. Huang, F. T. You, J. J. Chang, S. Z. Lu, L. Cao, J. Phys. Chem. B 2005, 109, 5774;
- 4cQ. L. Dai, H. W. Song, M. Y. Wang, X. Bai, B. Dong, R. F. Qin, X. S. Qu, H. Zhang, J. Phys. Chem. C 2008, 112, 19399;
- 4dZ. G. Liu, X. D. Sun, S. K. Xu, J. B. Lian, X. D. Li, Z. M. Xiu, Q. Li, D. Huo, J. G. Li, J. Phys. Chem. C 2008, 112, 2353;
- 4eJ. Dhanaraj, R. Jagannathan, D. C. Trivedi, J. Mater. Chem. 2003, 13, 1778.
- 5R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533.
- 6R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751.
- 7
- 7aS. B. Zhang, J. E. Northrup, Phys. Rev. Lett. 1991, 67, 2339;
- 7bS. H. Wei, S. B. Zhang, A. Zunger, J. Appl. Phys. 1999, 85, 7214.
- 8A. G. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, C. B. Murray, Nature 2010, 466, 474.
- 9E. W. J. L. Oomen, A. M. A. Vandongen, J. Non-Cryst. Solids 1989, 111, 205.
- 10B. Henderson, G. Imbusch, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford, 1989; p. 173.