Bismuth-Catalyzed Growth of SnS2 Nanotubes and Their Stability†
Aswani Yella
Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10–14, 55099 Mainz (Germany), Fax: (+49) 6131-39-25605
Search for more papers by this authorEnrico Mugnaioli Dr.
Institut für Physikalische Chemie der Johannes Gutenberg-Universität, Welderweg 11, 55099 Mainz (Germany)
Search for more papers by this authorMartin Panthöfer Dr.
Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10–14, 55099 Mainz (Germany), Fax: (+49) 6131-39-25605
Search for more papers by this authorHelen Annal Therese Dr.
Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10–14, 55099 Mainz (Germany), Fax: (+49) 6131-39-25605
Search for more papers by this authorUte Kolb Dr.
Institut für Physikalische Chemie der Johannes Gutenberg-Universität, Welderweg 11, 55099 Mainz (Germany)
Search for more papers by this authorWolfgang Tremel Prof. Dr.
Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10–14, 55099 Mainz (Germany), Fax: (+49) 6131-39-25605
Search for more papers by this authorAswani Yella
Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10–14, 55099 Mainz (Germany), Fax: (+49) 6131-39-25605
Search for more papers by this authorEnrico Mugnaioli Dr.
Institut für Physikalische Chemie der Johannes Gutenberg-Universität, Welderweg 11, 55099 Mainz (Germany)
Search for more papers by this authorMartin Panthöfer Dr.
Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10–14, 55099 Mainz (Germany), Fax: (+49) 6131-39-25605
Search for more papers by this authorHelen Annal Therese Dr.
Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10–14, 55099 Mainz (Germany), Fax: (+49) 6131-39-25605
Search for more papers by this authorUte Kolb Dr.
Institut für Physikalische Chemie der Johannes Gutenberg-Universität, Welderweg 11, 55099 Mainz (Germany)
Search for more papers by this authorWolfgang Tremel Prof. Dr.
Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Duesbergweg 10–14, 55099 Mainz (Germany), Fax: (+49) 6131-39-25605
Search for more papers by this authorWe thank G. Glasser and Dr. M. N. Tahir for SEM measurements. This research was supported by a fellowship to A.Y. from POLYMAT, the Graduate School of Excellence of the State of Rhineland-Palatinate. We are indebted for support from the Materials Science Center (MWFZ) in Mainz and the DFG within the priority program 1165 “Nanotubes and Nanowires: From Controlled Synthesis to Function”.
Graphical Abstract
Nanotubes of tin disulfide were fabricated from SnS2 nanoflakes by the vapor–liquid–solid process using bismuth nanodroplets as a catalyst. The SnS2 reagent in the gas phase preferentially adsorbs onto the bismuth particles; upon cooling, nucleation and growth of SnS2 nanotubes occurs (see HRTEM image). Annealing the nanotubes results in the formation of SnS2/SnS superlattices.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
anie_200900546_sm_miscellaneous_information.pdf949.6 KB | miscellaneous information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 1992, 360, 444–446;
- 1bY. Feldman, E. Wasserman, D. J. Srolovita, R. Tenne, Science 1995, 267, 222–225.
- 2Y. R. Hachohen, E. Grunbaum, J. Sloan, J. L. Hutchison, R. Tenne, Nature 1998, 395, 336–337.
- 3H. A. Therese, F. Rocker, A. Reiber, J. Li, M. Stepputat, G. Glasser, U. Kolb, W. Tremel, Angew. Chem. 2005, 117, 267–270;
10.1002/ange.200461326 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 262–265.
- 4J. Chen, S.-L. Li, Z.-L. Tao, Y.-T. Shen, C.-X. Cui, J. Am. Chem. Soc. 2003, 125, 5284–5285.
- 5J. A. Hollingsworth, D. M. Poojary, A. Clearfied, W. E. Buhro, J. Am. Chem. Soc. 2000, 122, 3562–3563.
- 6
- 6aD. J. Srolovitz, S. A. Safran, M. Homyonfer, R. Tenne, Phys. Rev. Lett. 1995, 74, 1779–1782;
- 6bN. G. Chopra, R. J. Luyren, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louis, A. Zettl, Science 1995, 269, 966–967.
- 7W. Tremel, E. W. Finckh, Chem. Unserer Zeit 2004, 38, 326–339.
- 8D. Li, X. L. Li, R. R. He, J. Zhu, Z. X. Deng, J. Am. Chem. Soc. 2002, 124, 1411–1416.
- 9A. Rothschild, J. Sloan, R. Tenne, J. Am. Chem. Soc. 2000, 122, 5169–5179.
- 10H. A. Therese, J. Li, U. Kolb, W. Tremel, Solid State Sci. 2005, 7, 67–72.
- 11C. M. Zelenski, P. K. Dorhout, J. Am. Chem. Soc. 1998, 120, 734–742; G. Chen, G.-Z. Shen, K.-B. Tang, Y.-K. Liu, Y.-T. Qian, Appl. Phys. A 2003, 77, 747–749.
- 12Y. D. Li, X. L. Li, R. R. He, J. Zhu, Z. X. Deng, J. Am. Chem. Soc. 2002, 124, 1411–1416.
- 13Y. Mastai, M. Homyonfer, A. Gedanken, G. Hodes, Adv. Mater. 1999, 11, 1010–1013.
10.1002/(SICI)1521-4095(199908)11:12<1010::AID-ADMA1010>3.0.CO;2-# CAS Web of Science® Google Scholar
- 14M. Jose. Yacaman, H. Lopes, P. Santiago, D. H. Galvan, I. L. Garzon, A. Reyes, Appl. Phys. Lett. 1996, 69, 1065–1067.
10.1063/1.116932 Google Scholar
- 15
- 15aM. S. Gudiksen, C. M. Lieber, J. Am. Chem. Soc. 2000, 122, 8801–8802.
- 16Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, C. M. Lieber, Appl. Phys. Lett. 2001, 78, 2214–2216.
- 17R. S. Wagner in Whisker Technology, Wiley-Interscience, New York, 1970, pp. 47–119.
- 18L. Ouyang, K. N. Maher, C. L. Yu, J. McCarty, H. Park, J. Am. Chem. Soc. 2007, 129, 133–138.
- 19
- 19aO. Madelung, U. Rössler, M. Schulz, Landolt-Börnstein—Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology: Non-Tetrahedrally Bonded Elements and Binary Compounds I, Springer, Berlin, 1991;
- 19bL. E. Conroy, K. C. Park, Inorg. Chem. 1968, 7, 459–463.
- 20F. Hulliger, Structural Chemistry of Layer-Type Phases (Eds.: ), Reidel, Dordrecht and Boston, 1977.
10.1007/978-94-010-1146-4 Google Scholar
- 21S. Y. Hong, R. Popovitz-Biro, Y. Prior, R. Tenne, J. Am. Chem. Soc. 2003, 125, 10470–10474.
- 22
- 22aG. A. Wiegers, Prog. Solid State Chem. 1996, 24, 1–139;
- 22bA. Meerschaut, Curr. Opin. Solid State Mater. Sci. 1996, 1, 250–259;
- 22cJ. Rouxel, A. Meerschaut, G. A. Wiegers, J. Alloys Compd. 1995, 229, 144–157.
- 23J. Zhu, H. Peng, C. K. Chan, K. Jarausch, X. F. Zhang, Y. Cui, Nano Lett. 2007, 7, 1095–1099.
- 24
- 24aJ. B. Hannon, S. Kodambaka, F. M. Ross, R. M. Tromp, Nature 2006, 440, 69–71;
- 24bL. Cao, B. Garipcan, J. S. Atchison, C. Ni, B. Nabet, J. E. Spanier, Nano Lett. 2006, 6, 1852–1857.
- 25
- 25aD. Wang, F. Qian, C. Yang, Z. Zhong, C. M. Lieber, Nano Lett. 2004, 4, 871–874;
- 25bK. A. Dick, K. Deppert, M. W Larsson, T. Martensson, W. Seifert, L. R. Wallenberg, L. Samuelson, Nat. Mater. 2004, 3, 380–384;
- 25cQ. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Lett. 2006, 6, 2909–2915;
- 25dR. Yang, Y.-L. Chueh, J. R. Morber, R. Snyder, L.-J. Chou, Z. L. Wang, Nano Lett. 2007, 7, 269–275.
- 26S. J. May, J.-G. Zheng, B. W. Wessels, L. J. Lauhon, Adv. Mater. 2005, 17, 598–602.