Applications and Limitations of Magnetic Methods in Free-Radical Chemistry†
Prof. Dr. E. Müller
Chemisches Institut der Universität Tübingen (Germany)
Search for more papers by this authorDr. A. Rieker
Chemisches Institut der Universität Tübingen (Germany)
Search for more papers by this authorDr. K. Scheffler
Chemisches Institut der Universität Tübingen (Germany)
Search for more papers by this authorDipl.-Chem. A. Moosmayer
Chemisches Institut der Universität Tübingen (Germany)
With the co-operation of Dr. M. Bauer and Dr. B. Zeeh.
Search for more papers by this authorProf. Dr. E. Müller
Chemisches Institut der Universität Tübingen (Germany)
Search for more papers by this authorDr. A. Rieker
Chemisches Institut der Universität Tübingen (Germany)
Search for more papers by this authorDr. K. Scheffler
Chemisches Institut der Universität Tübingen (Germany)
Search for more papers by this authorDipl.-Chem. A. Moosmayer
Chemisches Institut der Universität Tübingen (Germany)
With the co-operation of Dr. M. Bauer and Dr. B. Zeeh.
Search for more papers by this authorDedicated to Wilhelm Klemm in memory of the work done together
Abstract
The paper describes the application and limitations of magnetic methods to the problems of free-radical chemistry (detection and quantitative investigation of the free-radical state, relationships between structure and free-radical formation, “distribution” of the unpaired electron, detection of mesomeric C, O, N, P, As, and Sn radicals, g-factors, triplet states, and hyperfine structure). The problem of the diradical is described, and the paper closes with a discussion of the “Selwood effect”.
References
- 1 With the co-operation of Dr. M. Bauer and Dr. B. Zeeh.
- 2 Eu. Müller, W. Klemm, and W. Schüth, Naturwissenschaften 22, 335 (1934).
- 3 N. W. Taylor and G. N. Lewis, Proc. nat. Acad. Sci. USA 11, 456 (1925); further references: Eu. Müller, Naturwissenschaften 25, 545 (1937).
- 4 For a more detailed description see: Eu. Müller in Houben-Weyl: Methoden der organischen Chemie. 4th. ed., Thieme, Stuttgart 1955, Vol. III/2.
- 5 H. J. Dauben Jr., Science (Washington) 150, 370 (1965).
- 6 D. Greifeneder, Diploma Thesis, Universität Tübingen, 1965. Cf. also W. Duffy Jr., J. chem. Physics 36, 490 (1962); T. R. McGuire and C. T. Lane, Rev. Sci. 20, 489 (1949).
- 7 Eu. Müller, I. Müller-Rodloff, and W. Bunge, Liebigs Ann. Chem. 520, 235 (1935); cf. Eu. Müller and I. Müller-Rodloff, Liebigs Ann. Chem. 521, 81 (1935).
- 8(a) H. J. Friedrich, Z. Naturforsch. 19b, 663 (1964); (b) J. J. Lothe and G. Eia, Acta chem. scand. 12, 1535 (1958); (c) T. Laederich and P. Traynard, C. R. hebd. Séances Acad. Sci. 254, 1826 (1962).
- 9Cf. [7] and
Eu. Müller and
I. Müller-Rodloff,
Ber. dtsch. chem. Ges.
69, 665
(1936).
10.1002/cber.19360690406 Google Scholar
- 10
E. Hückel,
Trans. Faraday Soc.
30, 16
(1934).
10.1039/tf9343000040 Google Scholar
- 11 W. Theilacker et al., Angew. Chem. 69, 322 (1957).
- 12 Eu. Müller and K. Ley, Chem. Ber. 87, 922 (1954).
- 13 Eu. Müller and I. Müller-Rodloff, Liebigs Ann. Chem. 521, 89 (1935).
- 14Review: K. Ziegler, Angew. Chem. 61, 168 (1949).
- 15 W. Theilacker and M.-L. Wessel-Ewald, Liebigs Ann. Chem. 594, 214 (1955).
- 16 Eu. Müller and W. Janke, Z. Elektrochem. angew. physik. Chem. 45, 380 (1939) and earlier publications.
- 17 Recent ESR studies on ketyls: N. Hirota and S. I. Weissman, J. Amer. chem. Soc. 82, 4424 (1960); J. Amer. chem. Soc. 83, 3533 (1961); N. Hirota, J. chem. Physics 37, 1884 (1962); V. M. Kasakova and Ya. K. Ssyrkin, Dokl. Akad. Nauk S.S.S.R. 133, 112 (1960); Chem. Zbl. 1964, 34–0715; P. H. Rieger and G. K. Fraenkel, J. chem. Physics 37, 2811 (1962); R. Dehl and G. K. Fraenkel, J. chem. Physics 39, 1793 (1963); R. L. Ward, J. chem. Physics 36, 2230 (1962); G. R. Luckhurst and L. E. Orgel, Mol. Phys. 7, 297 (1964); P. B. Ayscough and R. Wilson, Proc. chem. Soc. (London) 1962, 229.
- 18 E. Hückel, Z. Physik. Chem. (B) 34, 339 (1936).
- 19 Eu. Müller and I. Müller-Rodloff, Liebigs Ann. Chem. 517, 134 (1935).
- 20
Eu. Müller and
H. Neuhoff.
Chem, Ber.
72, 2063
(1939);
10.1002/cber.19390721206 Google Scholartogether with E. Tietz, Chem, Ber. 74, 807 (1941).
- 21 W. Theilacker and W. Ozegowski, Chem. Ber. 73, 33 (1940).
- 22Regarding the theory of diradical polymerization, cf. Eu. Müller, Z. Elektrochem. angew. physik. Chem. 51, 23 (1945).
- 23
Eu. Müller and
H. Pfanz,
Chem. Ber.
74, 1051, 1075
(1941).
10.1002/cber.19410740636 Google Scholar
- 24 G. Schmauß, H. Baumgärtel, and H. Zimmermann, Angew. Chem. 77, 619 (1965); Angew. Chem. internat. Edit. 4, 596 (1965); R. Kuhn, F. A. Neugebauer, and H. Trischmann, Angew. Chem. 77, 43 (1965); Angew. Chem. internat. Edit. 4, 72 (1965); M. B. Neiman, E. G. Rozantsev, and V. A. Golubev, Izv. Akad. Nauk S.S.S.R., Otdel. khim. Nauk 1965, 548; E. G. Rozantsev et al., Izv. Akad. Nauk S.S.S.R., Otdel. khim. Nauk 1965, 718; J. Heidberg and J. A. Weil, J. Amer. chem. Soc. 86, 5173 (1964).
- 25 E. Zavoiskii, J. Physics (Moscow) 9, 245 (1945); Chem. Zbl. 40, 1073 (1946).
- 26 Detailed descriptions of the ESR method: (a) K. Scheffler, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 65, 439 (1961); (b) A. Horsfield, Chimia 17, 42 (1963); (c) K. H. Hausser, Chimia 14, 153 (1960); (d) J. R. Morton, Chem. Reviews 64, 453 (1964); (e) M. C. R. Symons, Adv. phys. org. Chemistry 1, 284 (1963); (f) D. J. E. Ingram: Free Radicals as Studied by Electron Spin Resonance, Butterworths, London 1958.
- 27 St. Goldschmidt and W. Schmidt, Ber. dtsch. chem. Ges. 55, 3197 (1922); St. Goldschmidt, A. Vogt, and M. A. Bredig, Liebigs Ann. Chem. 445, 123 (1925).
- 28 Eu. Müller, K. Schurr, and K. Scheffler, Liebigs Ann. Chem. 627, 132 (1959).
- 29 H. G. Cutforth and P. W. Selwood, J. Amer. chem. Soc. 70, 278 (1948). When these solutions were exposed to light, a paramagnetism corresponding to a free-radical content of 6% was found. Our own ESR measurements [28] failed to confirm this result.
- 30 R. W. Fessenden and R. H. Schuler, J. chem. Physics 39, 2147 (1963).
- 31 J. T. Pearson, P. Smith, and T. C. Smith, Canad. J. Chem. 42, 2022 (1964).
- 32 S. Ohnishi and I. Nitta, J. chem. Physics 39, 2848 (1963).
- 33 J. dos Santos-Veiga, Mol. Phys. 5, 639 (1962).
- 34 Examples are given by K. Maruyama, R. Tanikaga, and R. Goto, Bull. chem. Soc. Japan 37, 1893 (1964); Yu. D. Tsretkov, J. R. Rowlands, and D. H. Whiffen, J. chem. Soc. (London) 1964, 810; R. B. Ingalls and D. Kivelson, J. chem. Physics 38, 1907 (1963); K. A. Maas and D. H. State, Trans. Faraday Soc. 60, 1202 (1964); P. B. Ayscough and H. E. Evans, Trans. Faraday Soc. 60, 801 (1964); S. Ohnishi, T. Tanei, and I. Nitta, J. chem. Physics 37, 2402 (1962); I. Miyagava and W. Gordy, J. Amer. chem. Soc. 83, 1036 (1961).
- 35 M. S. Blois, Jr., H. W. Brown, R. M. Lemmon, R. O. Lindblom, and M. Weissbluth: Free Radicals in Biological Systems. Academic Press, New York and London 1961; G. Schoffa: Elektronenspinresonanz in der Biologie. G. Braun, Karlsruhe 1964.
- 36 M. Bersohn and J. R. Thomas, J. Amer. chem. Soc. 86, 959 (1964).
- 37 C. D. Cook and M. Fraser, J. org. Chemistry 29, 3716 (1964).
- 38 P. J. Zandstra and E. M. Evleth, J. Amer. chem. Soc. 86, 2664 (1964).
- 39 R. E. Banks, L. F. Farnell, R. N. Haszeldine, P. N. Preston, and L. H. Sutcliffe, Proc. chem. Soc. (London) 1964, 396.
- 40 P. I. Abell and L. H. Piette, J. Amer. chem. Soc. 84, 916 (1962).
- 41 A. Rieker, Lecture at the NMR and ESR Conference, Freiburg (Germany), on October 22nd, 1964; cf. Angew. Chem. 76, 601 (1964); Angew. Chem. internat. Edit. 3, 654 (1964).
- 42Cf. K. U. Ingold and J. R. Morton, J. Amer. chem. Soc. 86, 3400 (1964).
- 43 K. Scheffler and H. B. Stegmann, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 67, 864 (1963).
- 44 U. Schmidt, Angew. Chem. 76, 629 (1964); Angew. Chem. internat. Edit. 3, 602 (1964); U. Schmidt, F. Geiger, A. Müller, and K. Markau, Angew. Chem. 75, 640 (1963); Angew. Chem. internat. Edit. 2, 400 (1963).
- 45 E. A. Chandross, J. Amer. chem. Soc. 86, 1263 (1964).
- 46 E. A. Chandross and R. Kreilick, J. Amer. chem. Soc. 86, 117 (1964).
- 47 E. A. Chandross and R. Kreilick, J. Amer. chem. Soc. 85, 2530 (1963); A. Rieker, H. Kaufmann, R. Mayer, and Eu. Müller, Z. Naturforsch. 19b, 558 (1964).
- 48 Carbenes [49], nitrenes [50], hydrocarbon ions carrying two negative charges [51], hydrocarbon cations [52], or excited triplet states [53], all of which are extreme cases, are not taken into account.
- 49 E. Wasserman and R. W. Murray, J. Amer. chem. Soc. 86, 4203 (1964) and earlier publications.
- 50 E. Wasserman, L. Barash, and W. A. Yager, J. Amer. chem. Soc. 87, 2075 (1965); E. Wasserman, G. Smolinsky, and W. A. Yager, J. Amer. chem. Soc. 86, 3166 (1964).
- 51 R. E. Jesse, P. Biloen, R. Prins, J. D. W. van Voorst, and G. J. Hoijtink, Mol. Phys. 6, 633 (1963).
- 52 R. Brestow, R. Hul, and E. Wasserman, J. Amer. chem. Soc. 86, 5349 (1964).
- 53 C. A. Hutchison and B. W. Mangum, J. chem. Physics 29, 952 (1958); J. chem. Physics 34, 908 (1961); J. H. van der Waals and M. S. deGroot, Mol. Phys. 2, 333 (1959); J. B. Farmer, C. L. Gardner, and C. A. McDowell, J. chem. Physics 34, 1058 (1961).
- 54 Reviews: [26].
- 55 Deuterium: I = 1, μI = 0.857 μK. The deuterium splitting of about 0.28 gauss is no longer observed at the resolution achieved.
- 56
Eu. Müller,
A. Rieker, and
K. Scheffler,
Liebigs Ann. Chem.
645, 92
(1961).
10.1002/jlac.19616450109 Google Scholar
- 57 Eu. Müller, H. Eggensperger, A. Rieker, K. Scheffler, H.-D. Spanagel, H. B. Stegmann, and B. Teissier, Tetrahedron 21, 227 (1965).
- 58 A. Rieker, K. Scheffler, and Eu. Müller, Liebigs Ann. Chem. 670, 23 (1963).
- 59 A. Rieker and K. Scheffler, Tetrahedron Letters 1965, 1337; cf. K. Dimroth, F. Bär, and A. Berndt, Angew. Chem. 77, 217 (1965); Angew. Chem. internat. Edit. 4, 240 (1965).
- 60Cf. N. M. Atherton, E. J. Land, and G. Porter, Trans. Faraday Soc. 59, 818 (1963); K. H. Hausser, H. Brunner, and J. C. Jochims, Mol. Physics, in the press. We are grateful to Prof. Hausser for permission to publish the spectrum shown in Fig. 4.
- 61 For quantitative data on spin density distribution in aroxyls, cf. [56].
- 62 Reviews [26, 57]; cf. also P. L. Kolker and W. A. Waters, Chem. and Ind. 1963, 1205; T. J. Stone and W. A. Waters, J. chem. Soc. (London) 1964, 213; W. D. Pokhodenko, L. N. Ganyuk, Ye. A. Yakovleva, A. I. Shatenshtein, and A. I. Brodski, Dokl. Akad. Nauk S.S.S.R. 148, 1314 (1963); Chem. Zbl. 1965, 9–0784; M. B. Neiman and A. L. Buchachenko, Izv. Akad. Nauk S.S.S.R., Otdel. khim. Nauk 1961, 1742; C. Steelink, J. Amer. chem. Soc. 87, 2056 (1965).
- 63 T. J. Stone and W. A. Waters, Proc. chem. Soc. (London) 1962, 253.
- 64 Eu. Müller, F. Günter, K. Scheffler, P. Ziemek, and A. Rieker, Liebigs Ann. Chem. 688, 134 (1965); E. A. C. Lucken, J. chem. Soc. (London) 1964, 4234, 4240; E. W. Stone and A. H. Maki, J. chem. Physics 36, 1944 (1962); H. L. Strauss and G. K. Fraenkel, J. chem. Physics 35, 1738 (1961); T. J. Stone and W. A. Waters, J. chem. Soc. (London) 1965, 1488; R. W. Brandon and E. A. C. Lucken, J. chem. Soc. (London) 1961, 4273; Y. Matsunaga, Canad. J. Chem. 38, 1172 (1960) and earlier publications; A. Fairbourn and E. A. C. Lucken, J. chem. Soc. (London) 1963, 258; cf. [17].
- 65 G. A. Russel, R. D. Stephens, and E. R. Talaty, Tetrahedron Letters 1965, 1139 and earlier publications.
- 66 A. Rieker, K. Scheffler, R. Mayer, B. Narr, and Eu. Müller, unpublished work.
- 67 A. Rieker, unpublished work.
- 68 Eu. Müller, H. B. Stegmann, and K. Scheffler, Liebigs Ann. Chem. 657, 5 (1962).
- 69 A. Rieker and K. Scheffler, Liebigs Ann. Chem. 689, 78 (1965).
- 70
Eu. Müller,
R. Mayer,
B. Narr,
A. Rieker, and
K. Scheffler,
Liebigs Ann. Chem.
645, 19
(1961).
10.1002/jlac.19616450103 Google Scholar
- 71 H. B. Stegmann and K. Scheffler, Tetrahedron Letters 1964, 3387.
- 72 Eu. Müller, A. Rieker, K. Ley, R. Mayer, and K. Scheffler, Chem. Ber. 92, 2278 (1959).
- 73 F. Gerson, Helv. chim. Acta 47, 1941 (1964); F. Gerson, B. Weidmann, and E. Heilbronner, Helv. chim. Acta 47, 1951 (1964).
- 74 W. Rundel and K. Scheffler, Angew. Chem. 77, 220 (1965); Angew. Chem. internat. Edit. 4, 243 (1965).
- 75 K. Scheffler and H. B. Stegmann, Z. physik. Chem. 44, 353 (1965); P. Ludwig, T. Layloff, and R. N. Adams, J. Amer. chem. Soc. 86, 4568 (1964); E. W. Stone and A. H. Maki, J. Amer. chem. Soc. 86, 454 (1964); J. Gendell, J. H. Freed, and G. K. Fraenkel, J. chem. Phyics 37, 2832 (1952).
- 76 K. Scheffler and H. B. Stegmann, Tetrahedron Letters 1964, 3035.
- 77 E. W. Stone and A. H. Maki, J. chem. Physics 38, 1999 (1963).
- 78 G.-M. Schwab and E. Agallidis, Z. physik. Chem. Abt. B 41, 59 (1938); G.-M. Schwab and N. Agliardi, Ber. dtsch. chem. Ges. 73, 95 (1940); G.-M. Schwab and E. Schwab-Agallidis, Naturwissenschaften 28, 412 (1940); G.-M. Schwab and J. Voitländer, Naturwissenschaften 40, 439 (1953).
- 79Cf. Eu. Müller, Fortschr. chem. Forsch. 1, 325 (1949).
- 80 H. Hartmann, G. Gliemann, and H. Gebler, Theoret. chim. Acta 1, 144 (1963).
- 81 W. C. Dickinson, Physic. Rev. 81, 717 (1951).
- 82Cf. D. F. Evans, J. chem. Soc. (London) 1959, 2003.
- 83 H. J. Friedrich, Z. Naturforsch. 19b, 280 (1964).
- 84 H. J. Friedrich, Angew. Chem. 76, 496 (1964); Angew. Chem. internat. Edit. 3, 440 (1964).
- 85 S. Hünig et al., Liebigs Ann. Chem. 676, 32, 36, 52 (1964).
- 86 P. Baumgartner, E. Weltin, G. Wagniére, and E. Heilbronner, Helv. chim. Acta 48, 751 (1965).
- 87 For the excitation of the triplet state in rubrene, cf. M. Wilk, Z. Elektrochem. 64, 936 (1960). This author gives the dark value χmol = −620 (× 10−6) for rubrene. The correct value, however, is −340. Thus the difference from the value on irradiation (−280) is only +60, i.e. equivalent to a diradical content of 1 to 2%; this value is within the limits of error, cf. [19].
- 88 R. Kuhn, H. Katz, and W. Francke, Naturwissenschaften 22, 808 (1934), were the first to report the temperature-dependence of the magnetism of porphyrindin. Our measurements [89] showed the presence of a diamagnetic low-temperature form (↑ ↓) and a paramagnetic high-temperature form (↑↑) (ΔW ≈ 0.5 kcal/mole).
- 89 Eu. Müller and I. Müller-Rodloff, Liebigs Ann. Chem. 521, 81 (1935).
- 90 C. A. Hutchison, A. Kowalsky, R. C. Pastor, and G. W. Wheland, J. chem. Physics 20, 1485 (1952).
- 91 D. C. Reitz and S. I. Weissman, J. chem. Physics 33, 700 (1960).
- 92 Singlet-triplet degeneracy as in the atropic diradicals.
- 93 The dependence of the ESR intensity on the temperature could be explained by an energy difference of 2 to 3 kcal/mole between the singlet and triplet states, but it could also be due to dimerization or polymerization; cf. R. K. Waring, Jr., and G. J. Sloan, J. chem. Physics 40, 772 (1964).
- 94 H. M. McConnell, J. chem. Physics 33, 1868 (1960).
- 95 A. I. Burshtein and Yu. I. Naberukhin, Proc. Acad. Sci. USSR Chem. Sect. (English translation) 140, 754 (1961).
- 96 P. W. Selwood and R. M. Dobres, J. Amer. chem. Soc. 72, 3860 (1950) P. W. Selwood: Magnetochemistry. 2nd ed., Interscience, New York and London 1956, p. 262.
- 97 M. Meyot, G. Berthier, and B. Pullman, J. Chim. phys. 50, 176 (1953).
- 98 We are presently checking Selwood's views. With very pure (1) and (3) as the ESR standards, (4) is being studied both in the solid form and in solution at various concentrations and temperatures, both by the Gouy method and by the ESR method.