Boosting Performance of Quasi-Solid-State Zinc Ion Batteries via Zincophilic Solubilization
Yifan Wang
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Search for more papers by this authorWeilin Yan
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Search for more papers by this authorXuejun Zhu
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Search for more papers by this authorJinghao Li
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhaoqian Li
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hong Zhang
Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Hebei Handan, 056038 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYingke Ren
College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018 P.R. China
Search for more papers by this authorLie Mo
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Search for more papers by this authorProf. Yang Huang
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Lei Zhang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Linhua Hu
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYifan Wang
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Search for more papers by this authorWeilin Yan
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Search for more papers by this authorXuejun Zhu
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Search for more papers by this authorJinghao Li
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhaoqian Li
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hong Zhang
Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Hebei Handan, 056038 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorYingke Ren
College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018 P.R. China
Search for more papers by this authorLie Mo
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Search for more papers by this authorProf. Yang Huang
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Lei Zhang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Linhua Hu
Science Island Branch of Graduate School University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Hydrogel electrolytes hold great promise in tackling severe issues facing aqueous zinc-ion batteries (AZIBs). However, to satisfy the quest of flexible and eco-friendly batteries, developing low-cost and high mechanical durability hydrogel electrolyte remains a challenge. Here, employing the zincophilic solubilizer urea, we break the classical concentration limits of the low-cost Zn(Ac)2 salt and introduce it into the hydrogel skeleton. The “salting out” effect give the polymer chain sediments a tighter bundle and twist effect. The as-formed hydrogel electrolyte can endure 557% high elongation and 3.7 MPa compressive strength to resist repeated zinc plating/striping process and external physical stimuli. The in situ polyurea solid electrolyte interphase (SEI) layer leads to thermodynamically stable anode/electrolyte interface. Utilizing the hydrogel electrolyte, the zinc anode shows high reversibility, leading to an average Coulombic efficiency (CE) of 99.93% for 150 cycles on the Zn//Cu battery. When assembled with NH4V4O10 cathode (NVO), the full battery delivers a high capacity of 253.8 mAh g−1 beyond 1000 cycles longevity at 1 A g−1. The pouch battery also shows a high capacity of 280.7 mAh g−1 at 500 mA g−1 and operate steadily for 90.13% retention after 200 cycles, and maintained a stable voltage even experienced bending and folding.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
ange202508556-sup-0001-SuppMat.docx46.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Ji, L. F. Nazar, Nat. Sustain. 2024, 7, 98–99.
- 2J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li, H. Xu, R. Ye, Z. Tie, L. Sun, Z. Jin, Chem. Soc. Rev. 2024, 53, 10335–10369.
- 3B. Zhang, H. J. Fan, Joule 2025, 9, 101802.
- 4J. Li, Z. Liu, S. Han, P. Zhou, B. Lu, J. Zhou, Z. Zeng, Z. Chen, J. Zhou, Nano-Micro Lett.. 2023, 15, 237.
- 5T. Qiu, T. Wang, W. Tang, Y. Li, Y. Li, X. Lang, Q. Jiang, H. Tan, Angew. Chem. Int. Ed. 2023, 62, e202312020.
- 6Q. Fu, W. Zhang, X. Liu, Z. Lei, M. Zhang, H. Qu, X. Xiao, X. Zhong, Z. Liu P Qin, J. Yang, G. Zhou, J. Am. Chem. Soc. 2024, 146, 34950.
- 7H. Xia, G. Xu, X. Cao, C. Miao, H. Zhang, P. Chen, Y. Zhou, W. Zhang, Z. Sun, Adv. Mater. 2023, 35, 2301996.
- 8W. Zhu, Z. Lei, P. Wu, Energy Environ. Sci. 2025, 18, 3647-3658, https://doi.org/10.1039/d5ee00001g.
- 9S.-J. Guo, M.-Y. Yan, D.-M. Xu, P. He, K.-J. Yan, J.-X. Zhu, Y.-K. Yu, Z.-Y. Peng, Y.-Z. Luo, F.-F. Cao, Energy Environ. Sci. 2025, 18, 418–429.
- 10D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao, Y. Guo, Z. Zhang, S. Wu, L. Yin, Z. Weng, F. Kang, Q.-H. Yang, Nat. Sustain. 2022, 5, 205–213.
- 11C. Tian, J. Wang, R. Sun, T. Ali, H. Wang, B.-B. Xie, Y. Zhong, Y. Hu, Angew. Chem. Int. Ed. 2023, 62, e202310970.
- 12C. Li, W. Wang, J. Luo, W. Zhuang, J. Zhou, S. Liu, L. Lin, W. Gong, G. Hong, Z. Shao, J. Du, Q. Zhang, Y. Yao, Adv. Mater. 2024, 36, 2313772.
- 13D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Nat. Sustain. 2023, 6, 1474–1484.
- 14L. Geng, J. Meng, X. Wang, W. Wu, K. Han, M. Huang, C. Han, L. Wu, J. Li, L. Zhou, L. Mai, Chem 2025, 11, 102302.
- 15Y. Yan, S. Duan, B. Liu, S. Wu, Y. Alsaid, B. Yao, S. Nandi, Y. Du, T.-W. Wang, Y. Li, X. He, Adv. Mater. 2023, 35, 2211673.
- 16G. Cao, L. Zhao, X. Ji, Y. Peng, M. Yu, X. Wang, X. Li, F. Ran, Small 2023, 19, 2207610.
- 17S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Adv. Mater. 2022, 34, 2110140.
- 18X. Zheng, W. Xia, Y. Zhang, Extreme Mech. Lett. 2024, 73, 102252.
- 19R. Yuksel, Adv. Sustainable Syst. 2024, 8, 2400396.
- 20Y. Chen, S. He, Q. Rong, J. Energy Storage 2023, 73, 109023.
- 21F. Luo, S. Yang, Q. Wu, Y. Li, J. Zhang, Y. Zhang, J. Huang, H. Xie, Y. Chen, Energy Environ. Sci. 2024, 17, 8570–8581.
- 22Y. Wang, L. e. Mo, X. Zhang, Y. Ren, T. Wei, Y. He, Y. Huang, H. Zhang, P. Tan, Z. Li, J. Zhou, L. Hu, Adv. Energy Mater. 2024, 14, 2402041.
- 23J. Li, Y. Lou, S. Zhou, Y. Chen, X. Zhao, A. Azizi, S. Lin, L. Fu, C. Han, Z. Su, A. Pan, Angew. Chem. Int. Ed. 2024, 63, e202406906.
- 24Y. Wang, L. e. Mo, X. Zhang, Y. Ren, T. Wei, Z. Li, Y. Huang, H. Zhang, G. Cao, L. Hu, Adv. Energy Mater. 2023, 13, 2301517.
- 25J. Heo, D. Dong, Z. Wang, F. Chen, C. Wang, Joule 2025, 101844.
- 26G. Yaman Uzunoglu, R. Yuksel, Small 2025, 21, 2411478.
- 27H. Lu, S. Zheng, L. Wei, X. Zhang, X. Guo, Carbon Energy 2023, 5, e365.
- 28Y. Du, H. Wang, X. Li, J. Liu, Y. Liu, W. Zhang, Q. Liu, Y. Da, H. Li, Z. Sun, Y. Dong, X. Tian, J. Mater. Chem. A 2024, 12, 2024–2035.
- 29C. Wang, X. Zeng, J. Qu, J. M. Cairney, Q. Meng, P. J. Cullen, Z. Pei, Matter 2023, 6, 3993–4012.
- 30B. Kang, Q. Lang, J. Tu, J. Bu, J. Ren, B. Lyu, D. Gao, Polymers 2022, 14, 966.
- 31B. Lai, S. Liu, J. Cahir, Y. Sun, H. Yin, T. Youngs, J.-C. Tan, S. F. Fonrouge, M. G. D. Pópolo, J. L. Borioni, D. E. Crawford, F. M. Alexander, C. Li, S. E. J. Bell, B. Murrer, S. L. James, Adv. Mater. 2023, 35, 2306521.
- 32J. A. Doolan, L. S. Alesbrook, K. Baker, I. R. Brown, G. T. Williams, K. L. F. Hilton, M. Tabata, P. J. Wozniakiewicz, J. R. Hiscock, B. T. Goult.Nat. Nanotechnol. 2023, 18, 1060–1066.
- 33Q. Liu, Z. Yu, Q. Zhuang, J.-K. Kim, F. Kang, B. Zhang, Adv. Mater. 2023, 35, 2300498.
- 34X. Li, M. Jiang, Y. Du, X. Ding, C. Xiao, Y. Wang, Y. Yang, Y. Zhuo, K. Zheng, X. Liu, L. Chen, Y. Gong, X. Tian, X. Zhang, Mater. Horiz. 2023, 10, 2945–2957.
- 35H. Ni, W. J. Simonsick, A. D. Skaja, J. P. Williams, M. D. Soucek, Prog. Org. Coat. 2000, 38, 97–110.
- 36C. F. Holder, R. E. Schaak, ACS Nano 2019, 13, 7359–7365.
- 37T. Wei, Y. Ren, Y. Wang, L. e. Mo, Z. Li, H. Zhang, L. Hu, G. Cao, ACS Nano 2023, 17, 3765–3775.
- 38Q. Ren, X. Tang, X. Zhao, Y. Wang, C. Li, S. Wang, Y. Yuan, Nano Energy 2023, 109, 108306.
- 39X. Zhou, S. Huang, L. Gao, Z. Zhang, Q. Wang, Z. Hu, X. Lin, Y. Li, Z. Lin, Y. Zhang, Y. Tang, Z. Wen, M. Ye, X. Liu, C. C. Li, Angew. Chem. Int. Ed. 2024, 63, e202410434.
- 40Z. Wang, J. Diao, J. Burrow, K. Reimund, N. Katyal, G. Henkelman, C. Mullins, Adv. Funct. Mater. 2023, 33, 2304791.
- 41Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu, Y. Qian, Adv. Energy Mater. 2020, 10, 1903665.
- 42Y. Hao, G. Zhu, Adv. Sci. 2025, 2414788.
- 43S. Oswald, S. Baunack, Thin Solid Films 2003, 425, 9–19.
- 44W. Xu, J. Li, X. Liao, L. Zhang, X. Zhang, C. Liu, K. Amine, K. Zhao, J. Lu, J. Am. Chem. Soc. 2023, 145, 22456–22465.
- 45M. Rosentritt, S. Schneider-Feyrer, L. Kurzendorfer, J. Mech. Behav. Biomed. Mater. 2024, 150, 106349.
- 46J. Cao, M. Sun, D. Zhang, Y. Zhang, C. Yang, D. Luo, X. Yang, X. Zhang, J. Qin, B. Huang, Z. Zeng, J. Lu, ACS Nano 2024, 18, 16610–16621.
- 47Y. Song, M. Chen, Z. Zhong, Z. Liu, S. Liang, G. Fang, Nat. Commun. 2025, 16, 3142.
- 48X. Wang, H. Peng, H. Zheng, Z. Liu, K. Sun, G. Ma, Z. Lei, Energy Storage Mater. 2024, 73, 103856.
- 49Q. Wang, Q. Wang, X. Fan, C. Tang, L. Zhou, S. Liu, H. Tang, R. Liu, L. Zhu, L. Zhang, Q. Tian, X. Guo, J. Colloid Interface Sci. 2025, 680, 546–556.
- 50P. Du, D. Liu, X. Chen, H. Xie, X. Qu, D. Wang, H. Yin, Energy Storage Mater.. 2023, 57, 371–399.
- 51D. Zhu, J. Li, Z. Zheng, S. Ye, Y. Pan, J. Wu, F. She, L. Lai, Z. Zhou, J. Chen, H. Li, L. Wei, Y. Chen, ACS Appl. Mater. Interfaces 2024, 16, 16175–16185.
- 52T. Liu, X. Du, H. Wu, Y. Ren, J. Wang, H. Wang, Z. Chen, J. Zhao, G. Cui, Angew. Chem. Int. Ed. 2023, 62, e202311589.
- 53R. Chen, W. Zhang, C. Guan, Y. Zhou, I. Gilmore, H. Tang, Z. Zhang, H. Dong, Y. Dai Z Du, X. Gang, W. Zong Y Xu, P. Jiang, J. Liu, F. Zhao, J. Li, X. Wang, G. He, Angew. Chem. Int. Ed. 2024, 63, e202401987.
- 54W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li, W. Zong, H. Li, Z. Li, Z. Zhang, J. Zhu, F. Guo, X. Gao, Z. Du, J. Chen, T. Wang, G. He, I. Parkin, Angew. Chem. Int. Ed. 2023, 62, e202212695.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.