Phenylene Cage Synthesized by Metal-Mediated Assembly of Phenylene Macrocycle and Its Piezofluorochromic Behavior
Qing-Song Deng
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXuan-Wen Chen
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXi-Han Yu
State Key Laboratory of High Pressure and Superhard Materials, College of Physics Jilin University, Changchun, 130012 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorJiang-Feng Xing
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorBing-Hui Zheng
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Guanjun Xiao
State Key Laboratory of High Pressure and Superhard Materials, College of Physics Jilin University, Changchun, 130012 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorBo Zou
State Key Laboratory of High Pressure and Superhard Materials, College of Physics Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorCorresponding Author
Yuan-Zhi Tan
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQing-Song Deng
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXuan-Wen Chen
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXi-Han Yu
State Key Laboratory of High Pressure and Superhard Materials, College of Physics Jilin University, Changchun, 130012 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorJiang-Feng Xing
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorBing-Hui Zheng
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Guanjun Xiao
State Key Laboratory of High Pressure and Superhard Materials, College of Physics Jilin University, Changchun, 130012 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorBo Zou
State Key Laboratory of High Pressure and Superhard Materials, College of Physics Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorCorresponding Author
Yuan-Zhi Tan
State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
A phenylene macrocycle containing two meta-phenylene units positioned opposite each other was used as a building block to construct phenylene cages via platinum-mediated C─C coupling. A phenylene cage (PC[10]3), consisting of three phenylene macrocycle units, was successfully synthesized and thoroughly characterized using nuclear magnetic resonance (NMR) spectroscopy and single-crystal X-ray diffraction. PC[10]3 exhibited significant backbone strain and displayed bright blue emission with a quantum yield of 96%. Additionally, PC[10]3 exhibited a broader and more pronounced piezofluorochromic response compared to its macrocyclic unit, undergoing a distinct photoluminescence shift from blue to yellow–green under pressure. This work opens new avenues for designing and synthesizing hydrocarbon nanocages.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202506376-sup-0001-SuppMat.pdf2.1 MB | Supporting Information |
ange202506376-sup-0002-SuppMat.zip1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Zhang, Y. Zhang, F. Wei, Chem. Soc. Rev. 2017, 46, 3661–3715.
- 2S. E. Lewis, Chem. Soc. Rev. 2015, 44, 2221–2304.
- 3T. C. Dinadayalane, J. Leszczynski, Struct. Chem. 2010, 21, 1155–1169.
- 4U. H. F. Bunz, S. Menning, N. Martín, Angew. Chem. Int. Ed. 2012, 51, 7094–7101.
- 5J. Nogami, Y. Nagashima, H. Sugiyama, K. Miyamoto, Y. Tanaka, H. Uekusa, A. Muranaka, M. Uchiyama, K. Tanaka, Angew. Chem. Int. Ed. 2022, 61, e202200800.
- 6S. Salaverria, M. Irizar, J. Janeiro, P. Angulo-Portugal, T. Wang, J. Patrick Calupitan, J. Rodríguez-Fernández, A. Garcia-Lekue, M. Corso, E. Artacho, D. Peña, D. Pérez, D. G. de Oteyza, Chem.-Eur. J. 31, e202404256.
- 7J. Nogami, Y. Tanaka, H. Sugiyama, H. Uekusa, A. Muranaka, M. Uchiyama, K. Tanaka, J. Am. Chem. Soc. 2020, 142, 9834–9842.
- 8Z.-L. Qiu, D. Chen, Z. Deng, K.-S. Chu, Y.-Z. Tan, J. Zhu, Sci. China: Chem. 2021, 64, 1004–1008.
- 9J. Wang, X. Zhang, H. Jia, S. Wang, P. Du, Acc. Chem. Res. 2021, 54, 4178–4190.
- 10Y. Segawa, D. R. Levine, K. Itami, Acc. Chem. Res. 2019, 52, 2760–2767.
- 11K. Ikemoto, S. Yang, H. Naito, M. Kotani, S. Sato, H. Isobe, Nat. Commun. 2020, 11, 1807.
- 12X.-W. Chen, Q.-S. Deng, B.-H. Zheng, J.-F. Xing, H.-R. Pan, X.-J. Zhao, Y.-Z. Tan, J. Am. Chem. Soc. 2024, 146, 31665–31670.
- 13Z. Sun, T. Mio, K. Ikemoto, S. Sato, H. Isobe, J. Org. Chem. 2019, 84, 3500–3507.
- 14D. Imoto, H. Shudo, A. Yagi, K. Itami, Angew. Chem. Int. Ed. 2024, 64, e202413828.
- 15H. Sato, J. A. Bender, S. T. Roberts, M. J. Krische, J. Am. Chem. Soc. 2018, 140, 2455–2459.
- 16H. A. Staab, F. Binnig, Tetrahedron Lett. 1964, 5, 319–321.
10.1016/0040-4039(64)80020-4 Google Scholar
- 17W. S. Rapson, R. G. Shuttleworth, J. N. van Niekerk, J. Chem. Soc. 1943, 326–327.
- 18S. Yamago, Y. Watanabe, T. Iwamoto, Angew. Chem. Int. Ed. 2010, 49, 757–759.
- 19H. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, K. Itami, Angew. Chem. Int. Ed. 2009, 48, 6112–6116.
- 20R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 17646–17647.
- 21S. Hitosugi, T. Yamasaki, H. Isobe, J. Am. Chem. Soc. 2012, 134, 12442–12445.
- 22K. Matsui, Y. Segawa, T. Namikawa, K. Kamada, K. Itami, Chem. Sci. 2013, 4, 84–88.
- 23K. Matsui, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2014, 136, 16452–16458.
- 24E. Kayahara, T. Iwamoto, H. Takaya, T. Suzuki, M. Fujitsuka, T. Majima, N. Yasuda, N. Matsuyama, S. Seki, S. Yamago, Nat. Commun. 2013, 4, 2694.
- 25S. Cui, G. Zhuang, D. Lu, Q. Huang, H. Jia, Y. Wang, S. Yang, P. Du, Angew. Chem. Int. Ed. 2018, 57, 9330–9335.
- 26N. Hayase, J. Nogami, Y. Shibata, K. Tanaka, Angew. Chem. Int. Ed. 2019, 58, 9439–9442.
- 27J. Yang, L. L. Mao, H. Xiao, G. Zhang, S. Zhang, L. Kang, Z. Lin, C. H. Tung, L. Z. Wu, H. Cong, Angew. Chem. Int. Ed. 2024, 63, e202403062.
- 28J. N. Gao, A. Bu, Y. Chen, M. Huang, Z. Chen, X. Li, C. H. Tung, L. Z. Wu, H. Cong, Angew. Chem. Int. Ed. 2024, 63, e202408016.
- 29X.-W. Chen, K.-S. Chu, R.-J. Wei, Z.-L. Qiu, C. Tang, Y.-Z. Tan, Chem. Sci. 2022, 13, 1636–1640.
- 30M. Quernheim, F. E. Golling, W. Zhang, M. Wagner, H. J. Räder, T. Nishiuchi, K. Müllen, Angew. Chem. Int. Ed. 2015, 54, 10341–10346.
- 31Z. L. Qiu, C. Tang, X. R. Wang, Y. Y. Ju, K. S. Chu, Z. Y. Deng, H. Hou, Y. M. Liu, Y. Z. Tan, Angew. Chem. Int. Ed. 2020, 59, 20868–20872.
- 32H. W. Jiang, T. Tanaka, T. Kim, Y. M. Sung, H. Mori, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2015, 54, 15197–15201.
- 33T. Iwamoto, E. Kayahara, N. Yasuda, T. Suzuki, S. Yamago, Angew. Chem. Int. Ed. 2014, 53, 6430–6434.
- 34H. Jia, G. Zhuang, Q. Huang, J. Wang, Y. Wu, S. Cui, S. Yang, P. Du, Chem.-Eur. J. 2020, 26, 2159–2163.
- 35T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, S. Yamago, J. Am. Chem. Soc. 2011, 133, 8354–8361.
- 36S. Hitosugi, W. Nakanishi, T. Yamasaki, H. Isobe, Nat. Commun. 2011, 2, 492.
- 37H. Zhao, L. Cao, S. Huang, C. Ma, Y. Chang, K. Feng, L.-L. Zhao, P. Zhao, X. Yan, J. Org. Chem. 2020, 85, 6951–6958.
- 38E. Kayahara, L. Sun, H. Onishi, K. Suzuki, T. Fukushima, A. Sawada, H. Kaji, S. Yamago, J. Am. Chem. Soc. 2017, 139, 18480–18483.
- 39D. W. Szczepanik, M. Andrzejak, J. Dominikowska, B. Pawełek, T. M. Krygowski, H. Szatylowicz, M. Solà, Phys. Chem. Chem. Phys. 2017, 19, 28970–28981.
- 40D. W. Szczepanik, M. Andrzejak, K. Dyduch, E. Żak, M. Makowski, G. Mazur, J. Mrozek, Phys. Chem. Chem. Phys. 2014, 16, 20514–20523.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.