Molecularly Woven Artificial Solid Electrolyte Interphase
Dr. Tianyu Shan
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Zhijin Ju
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ding Xiao
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorKe Yue
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Zhenxing Cui
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorYifei Zhang
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorProf. Xiaodong Chi
State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorProf. Xiulin Fan
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Guangfeng Li
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xinyong Tao
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Feihe Huang
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDr. Tianyu Shan
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Zhijin Ju
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ding Xiao
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorKe Yue
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Zhenxing Cui
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorYifei Zhang
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorProf. Xiaodong Chi
State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorProf. Xiulin Fan
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Guangfeng Li
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xinyong Tao
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Feihe Huang
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P.R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Lithium-metal batteries (LMBs) are the most promising candidates for next-generation high-energy-density storage systems, but they suffer from destructive dendrite growth. Here, we integrate cutting-edge molecular weaving technology into the fabrication of artificial solid electrolyte interphases (ASEI) to realize dendrite-free and long-lasting LMBs. Specifically, weaving polymer chains into a 2D plane endows polymer network crystals with high strength and elasticity and creates angstrom-level meshes for Li-ion transport and uniform deposition. As a result, related Li plating experiments remained stable at an unprecedentedly high current density of 5 mA cm−2. Furthermore, full cells with “woven” ASEI exhibited superior long-term cycling performance compared to existing 2D materials, achieving a capacity retention of 98% over 270 cycles under stringent testing conditions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202505056-sup-0001-SuppMatS1.pdf4.8 MB | Supporting Information |
ange202505056-supp-0002-SuppMatS2.zip655.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Ju, C. Jin, X. Cai, O. Sheng, J. Wang, J. Luo, H. Yuan, G. Lu, X. Tao, Z. Liang, ACS Energy Lett. 2023, 8, 486–493.
- 2B. Zhang, Z. Ju, Q. Xie, J. Luo, L. Du, C. Zhang, X. Tao, Energy Storage Mater. 2023, 58, 322–331.
- 3W. Zhang, V. Koverga, S. Liu, J. Zhou, J. Wang, P. Bai, S. Tan, N. K. Dandu, Z. Wang, F. Chen, J. Xia, H. Wan, X. Zhang, H. Yang, B. L. Lucht, A. Li, X. Yang, E. Hu, S. R. Raghavan, A. T. Ngo, C. Wang, Nat. Energy 2023, 9, 386–400.
- 4Z. Ju, X. Tao, Y. Wang, Q. Yang, T. Liu, J. Nai, W. Zhang, S. Chen, Y. Liu, H. Tian, J. Lu, Energy Environ. Sci. 2024, 17, 4703–4713.
- 5L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar, B. Wang, J. Shi, Y. Shi, S. Narayanan, N. Koratkar, Science 2018, 359, 1513–1516.
- 6S. Zhang, R. Li, T. Deng, Q. Ma, X. Hong, H. Zhang, R. Zhang, S. Ding, Y. Wu, H. Zhu, M. Li, H. Zhang, D. Lu, B. Ma, L. Lv, Y. Li, L. Chen, Y. Shen, R. Guo, X. Fan, Nat. Energy 2024, 9, 1285–1296.
- 7Y. Zhong, X. Yang, R. Guo, L. Zhai, X. Wang, F. Wu, C. Wu, Y. Bai, Electrochem. Energy Rev. 2024, 7, 30.
- 8H. Liang, L. Wang, L. Sheng, H. Xu, Y. Song, X. He, Electrochem. Energy Rev. 2022, 5, 23.
- 9Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma, O. Sheng, G. Lu, X. Lou, Science 2022, 375, 739–745.
- 10M. Jana, R. Xu, X.-B. Cheng, J. S. Yeon, J. M. Park, J.-Q. Huang, Q. Zhang, H. S. Park, Energy Environ. Sci. 2020, 13, 1049–1075.
- 11J. Wang, K. Wang, Y. Xu, ACS Nano 2021, 15, 19026–19053.
- 12M. L. Meyerson, P. E. Papa, A. Heller, C. B. Mullins, ACS Nano 2021, 15, 29–46.
- 13Q. Pang, X. Liang, I. R. Kochetkov, P. Hartmann, L. F. Nazar, Angew. Chem. Int. Ed. 2018, 57, 9795–9798.
- 14Q. Pang, L. Zhou, L. F. Nazar, Proc. Natl. Acad. Sci. USA 2018, 115, 12389–12394.
- 15Y. Liu, Y. Ma, Y. Zhao, X. Sun, F. Gandara, H. Furukawa, Z. Liu, H. Zhu, C. Zhu, K. Suenaga, P. Oleynikov, A. S. Alshammari, X. Zhang, O. Terasaki, O. M. Yaghi, Science 2016, 351, 365–369.
- 16U. Lewandowska, W. Zajaczkowski, S. Corra, J. Tanabe, R. Borrmann, E. M. Benetti, S. Stappert, K. Watanabe, N. A. K. Ochs, R. Schaeublin, C. Li, E. Yashima, W. Pisula, K. Müllen, H. Wennemers, Nat. Chem. 2017, 9, 1068–1072.
- 17D. P. August, R. A. W. Dryfe, S. J. Haigh, P. R. C. Kent, D. A. Leigh, J. Lemonnier, Z. Li, C. A. Muryn, L. I. Palmer, Y. Song, G. F. S. Whitehead, R. J. Young, Nature 2020, 588, 429–435.
- 18D. Xiao, Z. Jin, G. Sheng, L. Chen, X. Xiao, T. Shan, J. Wang, R. Navik, J. Xu, L. Zhou, Q. Guo, G. Li, Y. Zhu, J. F. Stoddart, F. Huang, Nat. Chem. 2024, 16, 1906–1914.
- 19S. E. Neumann, J. Kwon, C. Gropp, L. Ma, R. Giovine, T. Ma, N. Hanikel, K. Wang, T. Chen, S. Jagani, R. O. Ritchie, T. Xu, O. M. Yaghi, Science 2024, 383, 1337–1343.
- 20F. W. Dagnaw, K. Harrath, T. Zheng, X. Wu, Y. Liu, R. Li, L. Xie, Z. Li, X. He, Q. Tong, J. Jian, Adv. Sci. 2024, 11, 2408152.
- 21K. Long, S. Huang, H. Wang, A. Wang, Y. Chen, Z. Liu, Y. Zhang, Z. Wu, W. Wang, L. Chen, Energy Environ. Sci. 2024, 17, 260–273.
- 22Y. Huang, B. Chen, J. Duan, F. Yang, T. Wang, Z. Wang, W. Yang, C. Hu, W. Luo, Y. Huang, Angew. Chem. Int. Ed. 2020, 59, 3699.
- 23F. Qiu, X. Li, H. Deng, D. Wang, X. Mu, P. He, H. Zhou, Adv. Energy Mater. 2019, 9, 1803372.
- 24Q. Zhang, L. Xu, X. Yue, J. Liu, X. Wang, X. He, Z. Shi, S. Niu, W. Gao, C. Cheng, Z. Liang, Adv. Energy Mater. 2023, 13, 2302620.
- 25Z. Zhao, W. Chen, S. Impeng, M. Li, R. Wang, Y. Liu, L. Zhang, L. Dong, J. Unruangsri, C. Peng, C. Wang, S. Namuangruk, S. Lee, Y. Wang, H. Lu, J. Guo, J. Mater. Chem. A 2020, 8, 3459–3467.
- 26J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 2021, 11, 2100046.
- 27A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, F. Mashayek, J. Phys. Chem. 2019, 123, 10237.
- 28S. Yao, Y. Yang, Z. Liang, J. Chen, J. Ding, F. Li, J. Liu, L. Xi, M. Zhu, J. Liu, Adv. Funct. Mater. 2023, 33, 2212466.
- 29M. Chen, Y. Fan, H. Zhou, G. Li, Small 2024, 20, 2306712.
- 30R. Pan, X. Xu, R. Sun, Z. Wang, J. Lindh, K. Edström, M. Strømme, L. Nyholm, Small 2018, 14, 1704371.
- 31L. Lin, F. Liu, X. Yan, Q. Chen, Y. Zhuang, H. Zheng, J. Lin, L. Wang, L. Han, Q. Wei, Q. Xie, D. Peng, Adv. Funct. Mater. 2021, 31, 2104081.
- 32W. Ren, K. Zhu, W. Zhang, H. Liang, L. Xu, L. Wang, C. Yang, Y. Yang, P. Zhang, F. Wang, Y. Wang, W. Li, Adv. Funct. Mater. 2023, 33, 2301586.
- 33B. Xu, H. Zhai, X. Liao, B. Qie, J. Mandal, T. Gong, L. Tan, X. Yang, K. Sun, Q. Cheng, M. Chen, Y. Miao, M. Wei, B. Zhu, Y. Fu, A. Li, X. Chen, W. Min, C. Nan, Y. Lin, Y. Yang, Energy Storage Mater. 2019, 17, 31–37.
- 34J. Liang, Q. Chen, X. Liao, P. Yao, B. Zhu, G. Lv, X. Wang, X. Chen, J. Zhu, Angew. Chem. Int. Ed. 2020, 59, 6561–6566.
- 35Y. Xu, T. Li, L. Wang, Y. Kang, Adv. Mater. 2019, 31, 1901662.
- 36L. Shen, H. Wu, F. Liu, C. Zhang, S. Ma, Z. Le, Y. Lu, Nanoscale Horiz. 2019, 4, 705–711.
- 37Y. Wang, Y. Shen, Z. Du, X. Zhang, K. Wang, H. Zhang, T. Kang, F. Guo, C. Liu, X. Wu, W. Lu, L. Chen, J. Mater. Chem. A 2017, 5, 23434–23439.
- 38J. Xie, J. Ye, F. Pan, X. Sun, K. Ni, H. Yuan, X. Wang, N. Shu, C. Chen, Y. Zhu, Adv. Mater. 2019, 31, 1805654.
- 39S. Jin, Z. Sun, Y. Guo, Z. Qi, C. Guo, X. Kong, Y. Zhu, H. Ji, Adv. Mater. 2017, 29, 1700783.
- 40Y. Song, P. Shi, B. Li, X. Chen, C. Zhao, W. Chen, X. Zhang, X. Chen, Q. Zhang, Matter 2021, 4, 253–264.
- 41D. Guo, F. Ming, D. Shinde, L. Cao, G. Huang, C. Li, Z. Li, Y. Yuan, M. Hedhili, H. Alshareef, Z. Lai, Adv. Funct. Mater. 2021, 31, 2101194.
- 42W. Yu, J. Yang, J. Li, K. Zhang, H. Xu, X. Zhou, W. Chen, K. P. Loh, Adv. Mater. 2021, 33, 2102083.
- 43J. Zuo, Y. Dang, P. Zhai, B. Li, L. Wang, M. Wang, Z. Yang, Q. Chen, X. Gu, Z. Li, P. Tang, Y. Gong, Nano Lett. 2023, 23, 8106–8114.
- 44W. Wang, Z. Yang, Y. Zhang, A. Wang, Y. Zhang, L. Chen, Q. Li, S. Qiao, Energy Storage Mater. 2022, 46, 374–383.
- 45W. Song, S. Cui, J. Zhang, S. Fan, L. Chen, H. Zhang, Y. Zhang, X. Meng, ACS Appl. Mater. Inter. 2023, 15, 9421–9430.
- 46G. Jiang, K. Li, F. Yu, X. Li, J. Mao, W. Jiang, F. Sun, B. Dai, Y. Li, Adv. Energy Mater. 2023, 11, 2003496.
- 47Q. Zhang, Z. Yang, X. Gu, Q. Chen, Q. Zhai, J. Zuo, Q. He, H. Jiang, Y. Yang, H. Duan, P. Zhang, P. Zhai, Y. Gong, Energy Storage Mater. 2023, 61, 102900.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.