Engineering an Excellent β-BaB2O4-Inspired UV Nonlinear Optical Material Through Secondary Building Unit Substitution
Lingli Wu
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorChensheng Lin
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorHaotian Tian
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorTao Yan
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorBing-Xuan Li
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorHuixin Fan
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorYujie Fan
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorShunda Yang
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Min Luo
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]
Search for more papers by this authorLingli Wu
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorChensheng Lin
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorHaotian Tian
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorTao Yan
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorBing-Xuan Li
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorHuixin Fan
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorYujie Fan
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorShunda Yang
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Min Luo
State Key Laboratory of Functional Crystals and Devices Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The development of nonlinear optical (NLO) crystals with tailored properties has been a long-standing pursuit, yet remains challenging to achieve. Herein, we report the successful synthesis of a novel high-performance UV NLO material, Li3[Be3(OH)3(C3H2O4)3]·7H2O (LBOC), by substituting the [B3O6] functional building units (FBUs) in the classic β-BaB2O4 (β-BBO) with meticulously designed [Be3(OH)3(C3H2O4)3]3− secondary building units (SBUs). The [Be3(OH)3(C3H2O4)3]3− SBUs within LBOC preserve the ordered arrangement of the [B3O6] FBUs found in β-BBO, enabling LBOC to inherit the strong second harmonic generation (SHG) response from β-BBO. Additionally, the increased dimensionality of the [Be3(OH)3(C3H2O4)3]3− SBUs, compared to the planar [B3O6] FBUs, leads to a reduction in optical anisotropy. Consequently, LBOC demonstrates a moderate birefringence of [email protected] nm, lower than that of β-BBO ([email protected] nm). Notably, bulk crystals of LBOC can be easily grown using a straightforward solution evaporation method, making it a promising candidate for UV NLO applications. This strategic design of the SBU opens new avenues for the rational development of NLO crystals with tailored properties.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
ange202500877-sup-0001-SuppMat.docx6.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Liu, Y.-C. Yang, M.-Y. Li, L. Chen, L.-M. Wu, Chem. Soc. Rev. 2023, 52, 8699–8720.
- 2L. F. Dong, S. Z. Zhang, P. F. Gong, L. Kang, Z. S. Lin, Coord. Chem. Rev. 2024, 509, 215805.
- 3B. Zhang, M.-Y. Ran, X.-T. Wu, H. Lin, Q.-L. Zhu, Coord. Chem. Rev. 2024, 517, 216053.
- 4Z. T. Yan, J. B. Fan, S. L. Pan, M. Zhang, Chem. Soc. Rev. 2024, 53, 6568–6599.
- 5F. L. Bu, H. P. Wu, Z. G. Hu, J. Y. Wang, Y. C. Wu, H. W. Yu, Adv. Funct. Mater. 2025, 35, 2414666.
- 6T. T. Tran, J. G. He, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2015, 137, 10504–10507.
- 7T. T. Tran, J. Young, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2017, 139, 1285–1295.
- 8L. Qi, X. X. Jiang, K. N. Duanmu, C. Wu, Z. S. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202309365.
- 9H. T. Qiu, R. An, J. J. Li, Z. H. Yang, S. L. Pan, M. R. D. Mutailipu, Adv. Opt. Mater. 12, 2401866.
- 10H. Y. Sha, D. L. Yang, Y. R. Shang, Z. J. Wang, R. B. Su, C. He, X. M. Yang, X. F. Long, Chin. Chem. Lett. 2025, 36, 109730.
- 11P.-F. Li, C.-L. Hu, Y.-F. Li, J.-G. Mao, F. Kong, J. Am. Chem. Soc. 2024, 146, 7868–7874.
- 12C. Wu, C. B. Jiang, G. F. Wei, X. X. Jiang, Z. J. Wang, Z. S. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang, J. Am. Chem. Soc. 2023, 145, 3040–3046.
- 13H. N. Liu, H. P. Wu, Z. G. Hu, J. Y. Wang, Y. C. Wu, H. W. Yu, J. Am. Chem. Soc. 2023, 145, 12691–12700.
- 14J. Y. Guo, A. B. D. K. D. Tudi, S. J. Han, Z. H. Yang, S. L. Pan, Angew. Chem. Int. Ed. 2021, 60, 24901–24904.
- 15M. R. D. Mutailipu, Z. Q. Xie, X. Su, M. Zhang, Y. Wang, Z. H. Yang, M. R. S. A. Janjua, S. L. Pan, J. Am. Chem. Soc. 2017, 139, 18397–18405.
- 16Z. J. Li, W. Q. Jin, F. F. Zhang, Z. H. Yang, S. L. Pan, ACS Cent. Sci. 2022, 8, 1557–1564.
- 17Y.-G. Chen, X. W. Hu, Y. Guo, S. G. Zhao, B. B. Zhang, X. Zhang, X.-M. Zhang, Chem. Mater. 2024, 36, 4775–4781.
- 18F. Wang, M. K. Zi, Q. Chen, Z. X. Wang, J. G. Wang, X. X. Jiang, Y.-G. Chen, Y. Guo, Z. S. Lin, X.-M. Zhang, Inorg. Chem. 2024, 63, 9720–9725.
- 19Y. Y. Yang, Y. Xiao, B. X. Li, Y.-G. Chen, P. H. Guo, B. B. Zhang, X.-M. Zhang, J. Am. Chem. Soc. 2023, 145, 22577–22583.
- 20C. T. Chen, G. L. Wang, X. Y. Wang, Z. Y. Xu, Appl. Phys. B 2009, 97, 9–25.
- 21G. Peng, C. S. Lin, N. Ye, J. Am. Chem. Soc. 2020, 142, 20542–20546.
- 22M. Luo, C. S. Lin, D. H. Lin, N. Ye, Angew. Chem. Int. Ed. 2020, 59, 15978–15981.
- 23C. T. Chen, B. C. Wu, A. D. Jiang, G. M. You, Sci. Sin. Ena. B. 1985. 28, 235–243.
- 24F. Liang, L. Kang, X. Y. Zhang, M.-H. Lee, Z. S. Lin, Y. C. Wu, Cryst. Growth Des. 2017, 17, 4015–4020.
- 25L. L. Wu, H. X. Fan, C. S. Lin, M. Luo, Chin. J. Struct. Chem. 2023, 42, 100019.
- 26M. Luo, J. Sichuan, Nor. Univ.: Nat. Sci. Ed. 2024, 47, 1–16.
- 27Z. Y. Bai, K. M. Ok, Coord. Chem. Rev. 2023, 490, 215212.
- 28Y.-C. Hao, C.-L. Hu, X. Xu, F. Kong, J.-G. Mao, Inorg. Chem. 2013, 52, 13644–13650.
- 29M. Ren, J. H. Lin, Y. Dong, L. Q. Yang, M. Z. Su, L. P. You, Chem. Mater. 1999, 11, 1576–1580.
- 30H. Schmidbaur, Coord. Chem. Rev. 2001, 215, 223–242.
- 31K. Dehnicke, B. Neumüller, Z. Anorg. Allg. Chem. 2008, 634, 2703–2728.
- 32F. Kraus, S. A. Baer, M. R. Buchner, A. J. Karttunen, Chem. - Eur. J. 2012, 18, 2131–2142.
- 33P. Barbaro, F. Cecconi, C. A. Ghilardi, S. Midollini, A. Orlandini, L. Alderighi, D. Peters, A. Vacca, E. Chinea, A. Mederos, Inorg. Chim. Acta 1997, 262, 187–194.
- 34Y. Sohrin, H. Kokusen, S. Kihara, M. Matsui, Y. Kushi, M. Shiro, J. Am. Chem. Soc. 1993, 115, 4128–4136.
- 35D. Naglav, B. Tobey, C. Wölper, D. Bläser, G. Jansen, S. Schulz, Eur. J. Inorg. Chem. 2016, 2016, 2424–2431.
- 36L. L. Wu, C. S. Lin, H. T. Tian, Y. Q. Zhou, H. X. Fan, S. D. Yang, N. Ye, M. Luo, Angew. Chem. Int. Ed. 2024, 63, e202315647.
- 37C. C. Jin, F. M. Li, X. Q. Li, J. J. Lu, Z. H. Yang, S. L. Pan, M. R. D. Mutailipu, Chem. Mater. 2022, 34, 7516–7525.
- 38H. T. Tian, C. S. Lin, Y. Q. Zhou, X. Zhao, H. X. Fan, T. Yan, N. Ye, M. Luo, Angew. Chem. Int. Ed. 2023, 62, e202304858.
- 39M. R. D. Mutailipu, J. Han, Z. Li, F. M. Li, J. J. Li, F. F. Zhang, X. F. Long, Z. H. Yang, S. L. Pan, Nat. Photon. 2023, 17, 694–701.
- 40D. H. Lin, M. Luo, C. S. Lin, F. Xu, N. Ye, J. Am. Chem. Soc. 2019, 141, 3390–3394.
- 41D. H. Lin, M. Luo, C. S. Lin, L. L. Cao, N. Ye, Cryst. Growth Des. 2020, 20, 4904–4908.
- 42Z.-P. Zhang, X. Liu, X. M. Liu, Z.-W. Lu, X. Sui, B.-Y. Zhen, Z. S. Lin, L. Chen, L.-M. Wu, Chem. Mater. 2022, 34, 1976–1984.
- 43A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, V. Barzda, J. Comput. Chem. 2011, 32, 1128–1134.
- 44M. Kalmutzki, M. Ströbele, F. Wackenhut, A. J. Meixner, H.-J. Meyer, Inorg. Chem. 2014, 53, 12540–12545.
- 45F. Liang, N. Z. Wang, X. M. Liu, Z. S. Lin, Y. C. Wu, Chem. Commun. 2019, 55, 6257–6260.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.