Enhancing the Reversibility and Kinetics of Heterovalent Ion-Substituted Mn-Based Prussian Blue Analogue Cathodes via Intervalence Charge Transfer
Lingtong Kong
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorZhongxin Jing
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorMuhammad Mamoor
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorYifan Jiang
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorYanjun Zhai
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000 P. R. China
Search for more papers by this authorGuangmeng Qu
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorLu Wang
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorBin Wang
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorCorresponding Author
Liqiang Xu
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorLingtong Kong
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorZhongxin Jing
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorMuhammad Mamoor
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorYifan Jiang
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorYanjun Zhai
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000 P. R. China
Search for more papers by this authorGuangmeng Qu
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorLu Wang
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorBin Wang
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorCorresponding Author
Liqiang Xu
Key Laboratory of Special Functional Aggregated Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100 P. R. China
Search for more papers by this authorAbstract
Mn3+ (d4) in manganese-based Prussian blue analogues (MnPBA) exhibits intrinsic orbital degeneracy upon sodiation/desodiation, resulting in severe Jahn–Teller distortion, which usually causes rapid capacity decay and sluggish kinetics. Unfortunately, traditional modification strategies are insufficient for electronic tuning of Mn3+ to mitigate these issues. Herein, Intervalence Charge Transfer (IVCT) of manganese and iron to vanadium ions is unraveled in a series of novel V3+-substituted MnPBA to enhance electrochemical reaction reversibility and kinetics. IVCT drives electron distribution from localized to delocalized, achieves electronic coupling, and mitigates Jahn–Teller by transferring a single-electron of Mn3+ eg orbital. Notably, the reported Na1.2V0.63Mn0.58Fe(CN)6 cathode demonstrates excellent rate capability (136.9 mAh g−1 at 20 mA g−1 and 94.9 mAh g−1 at 20 A g−1), remarkable long-cycle stability (91.6 % capacity retention after 300 cycles at 20 mA g−1 and 90.7 % after 2000 cycles at 2 A g−1), and robust performance across a wide temperature range (98.59 % capacity after 300 cycles at −30 °C and 50 mA g−1), surpassing the majority of reported sodium-ion cathodes. The intrinsic functioning mechanism of IVCT and quasi-zero-strain reaction mechanism were adequately understood through systematic in situ/ex situ characterizations. This study further develops electron-tuning of PBA, opening a new avenue toward advanced sodium-ion battery cathode materials.
Conflict of Interests
The authors declare no competing financial interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202500254-sup-0001-misc_information.pdf7.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. J. Buonocore, P. Luckow, G. Norris, J. D. Spengler, B. Biewald, J. Fisher, J. I. Levy, Nat. Clim. Change 2016, 6, 100–105;
- 1bY. Kong, L. Wang, M. Mamoor, B. Wang, G. Qu, Z. Jing, Y. Pang, F. Wang, X. Yang, D. Wang, L. Xu, Adv. Mater. 2024, 36, 2310143;
- 1cG. Qu, L. Wang, Y. Zhao, D. Wang, X. Zhang, B. Wang, F. Wang, Z. Jing, X. Xu, L. Xu, H. Li, Angew. Chem. Int. Ed. 2024, 63, e202409774.
- 2
- 2aC. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y. S. Hu, Science 2020, 370, 708–711;
- 2bR. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y.-S. Hu, J. Maier, Nat. Rev. Mater. 2021, 6, 1020–1035;
- 2cY. Li, F. Wu, Y. Li, M. Liu, X. Feng, Y. Bai, C. Wu, Chem. Soc. Rev. 2022, 51, 4484–4536;
- 2dJ. Li, Y. He, Y. Dai, H. Zhang, Y. Zhang, S. Gu, X. Wang, T. Gao, G. Zhou, L. Xu, Adv. Funct. Mater. 2024, n/a, 2406915.
- 3
- 3aZ. Jing, L. Kong, M. Mamoor, L. Wang, B. Zhang, B. Wang, Y. Zhai, F. Wang, G. Qu, Y. Kong, D. Wang, L. Xu, J. Am. Chem. Soc. 2025, 147, 3702–3713;
- 3bY. Wang, J. Jin, X. Zhao, Q. Shen, X. Qu, L. Jiao, Y. Liu, Angew. Chem. Int. Ed. 2024, 63, e202409152;
- 3cZ.-Y. Gu, X.-T. Wang, Y.-L. Heng, K.-Y. Zhang, H.-J. Liang, J.-L. Yang, E. H. Ang, P.-F. Wang, Y. You, F. Du, X.-L. Wu, Sci. Bull. 2023, 68, 2302–2306.
- 4
- 4aP. Hong, C. Xu, C. Yan, Y. Dong, H. Zhao, Y. Lei, ACS Energy Lett. 2025, 750–778;
- 4bJ. Ge, L. Fan, A. M. Rao, J. Zhou, B. Lu, Nat. Sustainability 2022, 5, 225–234;
- 4cY. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong, K. Persson, G. Ceder, Chem. Rev. 2021, 121, 1623–1669;
- 4dX. Hu, W. Jian, N. Hong, X. Zhong, M. Yang, S. Tao, J. Huang, H. Wang, J. Gao, W. Deng, G. Zou, H. Hou, D. S. Silvester, C. E. Banks, X. Ji, Angew. Chem. Int. Ed. 2024, n/a, e202410420;
- 4eH. Zhang, Y. Gao, J. Peng, Y. Fan, L. Zhao, L. Li, Y. Xiao, W. K. Pang, J. Wang, S.-L. Chou, Angew. Chem. Int. Ed. 2023, 62, e202303953.
- 5
- 5aC. Xu, Y. Ma, J. Zhao, P. Zhang, Z. Chen, C. Yang, H. Liu, Y.-S. Hu, Angew. Chem. Int. Ed. 2023, 62, e202217761;
- 5bL. Wang, J. Song, R. Qiao, L. A. Wray, M. A. Hossain, Y.-D. Chuang, W. Yang, Y. Lu, D. Evans, J.-J. Lee, S. Vail, X. Zhao, M. Nishijima, S. Kakimoto, J. B. Goodenough, J. Am. Chem. Soc. 2015, 137, 2548–2554.
- 6
- 6aH. A. Jahn, E. Teller, F. G. Donnan, P. Roy, Soc. A-Math. Phy. 1937, 161, 220–235;
- 6bF. Gebert, D. L. Cortie, J. C. Bouwer, W. Wang, Z. Yan, S.-X. Dou, S.-L. Chou, Angew. Chem. Int. Ed. 2021, 60, 18519–18526;
- 6cM. Wang, R. Ling, C. Zhou, C. Yang, W. Qi, Energy Storage Mater. 2024, 69, 103376.
- 7
- 7aM. Ye, S. You, J. Xiong, Y. Yang, Y. Zhang, C. C. Li, Mater. Today Energy 2022, 23, 100898;
- 7bJ. Peng, Y. Gao, H. Zhang, Z. Liu, W. Zhang, L. Li, Y. Qiao, W. Yang, J. Wang, S. Dou, S. Chou, Angew. Chem. Int. Ed. 2022, 61, e202205867.
- 8Y. Luo, J. Shen, Y. Yao, J. Dai, F. Ling, L. Li, Y. Jiang, X. Wu, X. Rui, Y. Yu, Adv. Mater. 2024, 36, 2405458.
- 9
- 9aZ. Xiao, F. Xia, L. Xu, X. Wang, J. Meng, H. Wang, X. Zhang, L. Geng, J. Wu, L. Mai, Adv. Funct. Mater. 2022, 32, 2108244;
- 9bS. Liu, B. Wang, X. Zhang, S. Zhao, Z. Zhang, H. Yu, Matter 2021, 4, 1511–1527.
- 10
- 10aC. D. Wessells, M. T. McDowell, S. V. Peddada, M. Pasta, R. A. Huggins, Y. Cui, ACS Nano 2012, 6, 1688–1694;
- 10bZ. Wang, K. Nie, M. T. Sougrati, C. Wang, Z. Liu, J. Wang, R. Ge, Q. Zheng, J. Wang, Chem. Eng. J. 2024, 488, 151090.
- 11
- 11aD. M. D′Alessandro, F. R. Keene, Chem. Rev. 2006, 106, 2270–2298;
- 11bD. A. Robinson, M. E. Foster, C. H. Bennett, A. Bhandarkar, E. R. Webster, A. Celebi, N. Celebi, E. J. Fuller, V. Stavila, C. D. Spataru, D. S. Ashby, M. J. Marinella, R. Krishnakumar, M. D. Allendorf, A. A. Talin, Adv. Mater. 2023, 35, 2207595.
- 12R. Murase, C. F. Leong, D. M. D'Alessandro, Inorg. Chem. 2017, 56, 14373–14382.
- 13D. M. D′Alessandro, F. R. Keene, Chem. Soc. Rev. 2006, 35, 424–440.
- 14M. B. Robin, Inorg. Chem. 1962, 1, 337–342.
- 15
- 15aC. Gao, J. Wang, H. Xu, Y. Xiong, Chem. Soc. Rev. 2017, 46, 2799–2823;
- 15bL. Hedley, M. D. Horbury, F. Liedy, J. O. Johansson, Chem. Phys. Lett. 2017, 687, 125–130.
- 16C. Hua, P. W. Doheny, B. Ding, B. Chan, M. Yu, C. J. Kepert, D. M. D'Alessandro, J. Am. Chem. Soc. 2018, 140, 6622–6630.
- 17
- 17aB. Toby, Expgui, J. Appl. Crystallogr 2001, 34, 210–213;
- 17bA. C. Larson, R. B. Dreele, Los Alamos Natl Lab Rep LAUR. 2004, 748, 86–748.
- 18S. Liu, J. Du, Z. Song, C. Ma, Q. Liu, Light Sci. Appl. 2023, 12, 181.
- 19
- 19aJ. Zhang, J. Qiao, K. Sun, Z. Wang, Particuology 2021;
- 19bY. Luo, Y. Bai, A. Mistry, Y. Zhang, D. Zhao, S. Sarkar, J. V. Handy, S. Rezaei, A. C. Chuang, L. Carrillo, K. Wiaderek, M. Pharr, K. Xie, P. P. Mukherjee, B.-X. Xu, S. Banerjee, Nat. Mater. 2022, 21, 217–227.
- 20
- 20aA. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie, W. Zhang, H. Gao, L. Xue, J. Li, Adv. Energy Mater. 2021, 11, 2000943;
- 20bB. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan, M. Yan, Y. Jiang, iScience 2018, 3, 110–133.
- 21
- 21aY. Wang, X. Zhao, J. Jin, Q. Shen, Y. Hu, X. Song, H. Li, X. Qu, L. Jiao, Y. Liu, J. Am. Chem. Soc. 2023, 145, 22708–22719;
- 21bT. Cui, L. Liu, Y. Xiang, C. Sheng, X. Li, Y. Fu, J. Am. Chem. Soc. 2024, 146, 13924–13933;
- 21cJ. Liu, J. Liu, M. Tang, J. Fu, X. Kuang, J. Ma, Adv. Funct. Mater. 2024, 34, 2314167;
- 21dY. Luo, J. Shen, Y. Yao, J. Dai, F. Ling, L. Li, Y. Jiang, X. Wu, X. Rui, Y. Yu, Adv. Mater. 2024, n/a, 2405458;
- 21eY. Ma, Y. Ma, S. L. Dreyer, Q. Wang, K. Wang, D. Goonetilleke, A. Omar, D. Mikhailova, H. Hahn, B. Breitung, T. Brezesinski, Adv. Mater. 2021, 33, 2101342;
- 21fQ. Han, Z. Yang, Y. n. Hu, S. Gao, X. Liu, C. Wang, J. Han, Chem. Eng. J. 2024, 493, 152575;
- 21gC. Tang, W. Lu, Y. Zhang, W. Zhang, C. Cui, P. Liu, L. Han, X. Qian, L. Chen, F. Xu, Y. Mai, Adv. Mater. 2024, 36, 2402005.
- 22
- 22aY. Gao, X. Wu, L. Wang, Y. Zhu, G. Sun, Y. Tang, M. Yan, Y. Jiang, Adv. Funct. Mater. 2024, 34, 2314860;
- 22bJ. Peng, Y. Gao, H. Zhang, Z. Liu, W. Zhang, L. Li, Y. Qiao, W. Yang, J. Wang, S. Dou, S. Chou, Angew. Chem. Int. Ed. 2022, 61, e202205867.
- 23
- 23aM. Schönleber, D. Klotz, E. Ivers-Tiffée, Electrochim. Acta 2014, 131, 20–27;
- 23bY. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Joule 2022, 6, 1172–1198.
- 24J. Liu, Y. Wang, N. Jiang, B. Wen, C. Yang, Y. Liu, Angew. Chem. Int. Ed. 2024, 63, e202400214.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.