Halogen Bonding Enable Improved Performance and Stability of Dion–Jacobson Perovskite Solar Cells
Nanliu Liu
School of Physics and Electronics, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000 P.R. China
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorQingqing Zou
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorYing Li
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorGuoting Li
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorYan Chen
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorRongzhou Liang
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorSijin Liu
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorShiwei Lu
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorWeiKe Wang
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorBing Ji
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorLili Ke
Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan, 411105 P.R. China
Search for more papers by this authorGuozheng Nie
Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201 P.R. China
Search for more papers by this authorHongpeng Zhou
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorBiao Liu
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083 P.R. China
Search for more papers by this authorYaxin Zhai
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorCorresponding Author
Yuanyuan Guo
School of Medical Engineering and Technology, Institute of Medical Engineering Interdisciplinary Research, Xinjiang Medical University, Urumqi, 830011 P.R. China
Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jifei Wang
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorNanliu Liu
School of Physics and Electronics, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000 P.R. China
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorQingqing Zou
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorYing Li
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorGuoting Li
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorYan Chen
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorRongzhou Liang
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorSijin Liu
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorShiwei Lu
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorWeiKe Wang
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorBing Ji
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorLili Ke
Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan, 411105 P.R. China
Search for more papers by this authorGuozheng Nie
Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201 P.R. China
Search for more papers by this authorHongpeng Zhou
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorBiao Liu
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083 P.R. China
Search for more papers by this authorYaxin Zhai
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Search for more papers by this authorCorresponding Author
Yuanyuan Guo
School of Medical Engineering and Technology, Institute of Medical Engineering Interdisciplinary Research, Xinjiang Medical University, Urumqi, 830011 P.R. China
Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jifei Wang
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081 P.R. China
Key Laboratory of Multifunctional Ionic Electronic Materials and Devices, School of Physics and Electronics, Hunan Normal University, Changsha, 410081 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The undesired phase distribution and intrinsic residual lattice strain remain the bottleneck for high-performance and stable 2D or Q-2D perovskite solar cells (PSCs), especially for the Dion–Jacobson (DJ) type Q-2D PSCs. Here, we showcase employing halogen bonds to stabilize the halide anions and fine-tuning the residual lattice strain by introducing perfluorodecyl iodide (PFI). It reduces the density of iodide species defects and releases the residual tensile strain, leading to more homogenous phase distribution, suppressed carrier recombination, promoted charge transport, enhanced efficiency, and stability. Therefore, DJ PSCs maintain over 81% of initial efficiency after thermal-light aging (i.e., under 85 °C and 1 sun illumination) for 952 h, and remain over 91% of initial efficiency after under reverse bias (−2.5 V, under ISOS-V aging tests) for over 21 h, representing one of the most bias-stable Q-2D PSCs reported so far.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202500131-sup-0001-SuppMat.docx28.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232–11235.
- 2N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Photonics 2016, 10, 699–704.
- 3X. Xiao, J. Dai, Y. Fang, J. Zhao, X. Zheng, S. Tang, P. N. Rudd, X. C. Zeng, J. Huang, ACS Energy Lett. 2018, 3, 684–688.
- 4Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, J. Huang, ACS Energy Lett. 2017, 2, 1571–1572.
- 5F. Zhang, Y. Park So, C. Yao, H. Lu, P. Dunfield Sean, C. Xiao, S. Uličná, X. Zhao, L. Du Hill, X. Chen, X. Wang, E. Mundt Laura, H. Stone Kevin, T. Schelhas Laura, G. Teeter, S. Parkin, L. Ratcliff Erin, Y.-L. Loo, J. Berry Joseph, C. Beard Matthew, Y. Yan, W. Larson Bryon, K. Zhu, Science 2022, 375, 71–76.
- 6L. Cheng, K. Meng, Z. Qiao, Y. Zhai, R. Yu, L. Pan, B. Chen, M. Xiao, G. Chen, Adv. Mater. 2022, 34, 2106380.
- 7L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 3775–3783.
- 8E. S. Vasileiadou, B. Wang, I. Spanopoulos, I. Hadar, A. Navrotsky, M. G. Kanatzidis, J. Am. Chem. Soc. 2021, 143, 2523–2536.
- 9Q. Cheng, B. Wang, G. Huang, Y. Li, X. Li, J. Chen, S. Yue, K. Li, H. Zhang, Y. Zhang, H. Zhou, Angew. Chem. Int. Ed. 2022, 61, e202208264.
- 10J. Wang, G. Nie, W. Huang, Y. Guo, Y. Li, Z. Yang, Y. Chen, K. Ding, Y. Yang, W. Wang, L.-M. Kuang, K. Yang, D. Tang, Y. Zhai, Nano Lett. 2024, 24, 11873–11881.
- 11K. Wang, Z.-Y. Lin, Z. Zhang, L. Jin, K. Ma, A. H. Coffey, H. R. Atapattu, Y. Gao, J. Y. Park, Z. Wei, B. P. Finkenauer, C. Zhu, X. Meng, S. N. Chowdhury, Z. Chen, T. Terlier, T.-H. Do, Y. Yao, K. R. Graham, A. Boltasseva, T.-F. Guo, L. Huang, H. Gao, B. M. Savoie, L. Dou, Nat. Commun. 2023, 14, 397.
- 12J. Wang, S. Luo, X. Tang, S. Xiao, Z. Chen, S. Pang, L. Zhang, Y. Lin, J. He, Y. Yuan, ACS Energy Lett. 2021, 6, 3634–3642.
- 13C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Nat. Commun. 2019, 10, 815.
- 14Y. Chen, Y. Lei, Y. Li, Y. Yu, J. Cai, M.-H. Chiu, R. Rao, Y. Gu, C. Wang, W. Choi, H. Hu, C. Wang, Y. Li, J. Song, J. Zhang, B. Qi, M. Lin, Z. Zhang, A. E. Islam, B. Maruyama, S. Dayeh, L.-J. Li, K. Yang, Y.-H. Lo, S. Xu, Nature 2020, 577, 209–215.
- 15M. I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, O. Voznyy, E. H. Sargent, Nat. Energy 2018, 3, 648–654.
- 16Y. Zhou, H. Zhang, Y. Xian, Z. Shi, J. N. Aboa, C. Fei, G. Yang, N. Li, F. A. Selim, Y. Yan, J. Huang, Joule 2024, 9, 101772.
- 17C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu, J. Xia, S. Zuo, Y. Hu, X. Gao, W. Hui, L. Chao, T. Niu, M. Fang, H. Lu, H. Dong, H. Yu, S. Chen, X. Ran, L. Song, B. Li, J. Zhang, Y. Peng, G. Shao, J. Wang, Y. Chen, G. Xing, W. Huang, Nat. Energy 2021, 6, 38–45.
- 18D. Yu, F. Cao, J. Liao, B. Wang, C. Su, G. Xing, Nat. Commun. 2022, 13, 6229.
- 19J. Wang, D. Lin, Y. Chen, S. Luo, L. Ke, X. Ren, S. Cui, L. Zhang, Z. Li, K. Meng, Y. Lin, L. Ding, Y. Yuan, Sol. RRL 2020, 4, 2000371.
- 20J. Wang, S. Luo, Y. Lin, Y. Chen, Y. Deng, Z. Li, K. Meng, G. Chen, T. Huang, S. Xiao, H. Huang, C. Zhou, L. Ding, J. He, J. Huang, Y. Yuan, Nat. Commun. 2020, 11, 582.
- 21S. Wang, Y. Jiang, E. J. Juarez-Perez, L. K. Ono, Y. Qi, Nat. Energy 2017, 2, 16195.
- 22J. Hu, Z. Xu, T. L. Murrey, I. Pelczer, A. Kahn, J. Schwartz, B. P. Rand, Adv. Mater. 2023, 35, 2303373.
- 23X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie, H. Huang, B. Yang, Y. Yan, Y. Gao, J. He, J. Huang, Y. Yuan, Nat. Mater. 2024, 23, 810–817.
- 24Z. Song, K. Sun, Y. Meng, Z. Zhu, Y. Wang, W. Zhang, Y. Bai, X. Lu, R. Tian, C. Liu, Z. Ge, Adv. Mater. 2024, 37, 2410779.
- 25X. Lu, K. Sun, Y. Wang, C. Liu, Y. Meng, X. Lang, C. Xiao, R. Tian, Z. Song, Z. Zhu, M. Yang, Y. Bai, Z. Ge, Adv. Mater. 2024, 36, 2400852.
- 26Y. Shen, T. Zhang, G. Xu, J. A. Steele, X. Chen, W. Chen, G. Zheng, J. Li, B. Guo, H. Yang, Y. Wu, X. Lin, T. Alshahrani, W. Yin, J. Zhu, F. Wang, A. Amassian, X. Gao, X. Zhang, F. Gao, Y. Li, Y. Li, Nature 2024, 635, 882–889.
- 27J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu, Y. Huang, X. Wang, C. Qin, Z. Chen, C.-C. Chen, Energy Environ. Sci. 2022, 15, 296–310.
- 28X. Zheng, C. Wu, S. K. Jha, Z. Li, K. Zhu, S. Priya, ACS Energy Lett. 2016, 1, 1014–1020.
- 29S. Song, S. J. Yang, W. Choi, H. Lee, W. Sung, C. Park, K. Cho, Adv. Energy Mater. 2020, 10, 2001759.
- 30N. Yang, C. Zhu, Y. Chen, H. Zai, C. Wang, X. Wang, H. Wang, S. Ma, Z. Gao, X. Wang, J. Hong, Y. Bai, H. Zhou, B.-B. Cui, Q. Chen, Energy Environ. Sci. 2020, 13, 4344–4352.
- 31H. Sun, S. Wang, P. Wang, Y. Liu, S. Qi, B. Shi, Y. Zhao, X. Zhang, J. Energy Chem. 2025, 100, 87–93.
- 32Y. Ding, E. Feng, S. Lu, J. Chang, C. Long, S. Tong, H. Li, J. Yang, Energy Environ. Sci. 2024, 17, 9268–9277.
- 33H. Zhang, Z. Wang, H. Wang, X. Yao, F. Wang, S. Wang, S. Bai, J. Huang, X. Luo, S. Wu, X. Liu, J. Mater. Chem. A 2023, 11, 15301–15310.
- 34R. Li, Y. Xu, W. Li, Y. Li, J. Peng, M. Xu, Q. Lin, J. Phys. Chem. Lett. 2021, 12, 1726–1733.
- 35H. Tsai, D. Ghosh, W. Panaccione, L.-Y. Su, C.-H. Hou, L. Wang, L. R. Cao, S. Tretiak, W. Nie, ACS Energy Lett. 2022, 7, 3871–3879.
- 36Y. H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P. K. Madhu, A. B. Morales-Vilches, P. K. Nayak, S. Bai, F. Gao, C. R. M. Grovenor, M. B. Johnston, J. G. Labram, J. R. Durrant, J. M. Ball, B. Wenger, B. Stannowski, H. J. Snaith Science 2020, 369, 96–102.
- 37J. Wang, M. A. Uddin, B. Chen, X. Ying, Z. Ni, Y. Zhou, M. Li, M. Wang, Z. Yu, J. Huang, Adv. Energy Mater. 2023, 13, 2204115.
- 38X. Fu, T. He, S. Zhang, X. Lei, Y. Jiang, D. Wang, P. Sun, D. Zhao, H.-Y. Hsu, X. Li, M. Wang, M. Yuan, Chem 2021, 7, 3131–3143.
- 39C. M. Wolff, L. Canil, C. Rehermann, N. Ngoc Linh, F. Zu, M. Ralaiarisoa, P. Caprioglio, L. Fiedler, M. Stolterfoht, S. Kogikoski, I. Bald, N. Koch, E. L. Unger, T. Dittrich, A. Abate, D. Neher, ACS Nano 2020, 14, 16156–16156.
- 40C. Zhang, X. Shen, M. Chen, Y. Zhao, X. Lin, Z. Qin, Y. Wang, L. Han, Adv. Energy Mater. 2023, 13, 2203250.
- 41S. Yu, Y. Yan, M. Abdellah, T. Pullerits, K. Zheng, Z. Liang, Small 2019, 15, 1905081.
- 42J. Tao, X. Liu, J. Shen, S. Han, L. Guan, G. Fu, D.-B. Kuang, S. Yang, ACS Nano, 2022, 16, 10798–10810.
- 43S. Bi, H. Wang, J. Zhou, S. You, Y. Zhang, X. Shi, Z. Tang, H. Zhou, J. Mater. Chem. A 2019, 7, 6840–6848.
- 44C. Shi, Q. Song, H. Wang, S. Ma, C. Wang, X. Zhang, J. Dou, T. Song, P. Chen, H. Zhou, Y. Chen, C. Zhu, Y. Bai, Q. Chen, Adv. Funct. Mater. 2022, 32, 2201193.
- 45Q. Wang, X. Jiang, C. Peng, J. Zhang, H. Jiang, H. Bu, G. Yang, H. Wang, Z. Zhou, X. Guo, Chem. Eng. J. 2024, 481, 148464.
- 46Q. Tu, D. Kim, M. Shyikh, M. G. Kanatzidis, Matter 2021, 4, 2765–2809.
- 47G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, L. Martinu, J. Vac. Sci. Technol. A 2018, 36, 020801.
- 48N. Phung, R. Félix, D. Meggiolaro, A. Al-Ashouri, G. Sousa e Silva, C. Hartmann, J. Hidalgo, H. Köbler, E. Mosconi, B. Lai, R. Gunder, M. Li, K.-L. Wang, Z.-K. Wang, K. Nie, E. Handick, R. G. Wilks, J. A. Marquez, B. Rech, T. Unold, J.-P. Correa-Baena, S. Albrecht, F. De Angelis, M. Bär, A. Abate, J. Am. Chem. Soc. 2020, 142, 2364–2374.
- 49M. A. Ruiz-Preciado, D. J. Kubicki, A. Hofstetter, L. McGovern, M. H. Futscher, A. Ummadisingu, R. Gershoni-Poranne, S. M. Zakeeruddin, B. Ehrler, L. Emsley, J. V. Milić, M. Grätzel, J. Am. Chem. Soc. 2020, 142, 1645–1654.
- 50S. You, H. Zeng, Y. Liu, B. Han, M. Li, L. Li, X. Zheng, R. Guo, L. Luo, Z. Li, C. Zhang, R. Liu, Y. Zhao, S. Zhang, Q. Peng, T. Wang, Q. Chen, F. T. Eickemeyer, B. Carlsen, S. M. Zakeeruddin, L. Mai, Y. Rong, M. Grätzel, X. Li, Science 2023, 379, 288–294.
- 51S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li, S. Luo, L. Ke, Y. Gao, K. Meng, L. Ding, Y. Yuan, Adv. Sci. 2020, 7, 2002445.
- 52J. Qing, X.-K. Liu, M. Li, F. Liu, Z. Yuan, E. Tiukalova, Z. Yan, M. Duchamp, S. Chen, Y. Wang, S. Bai, J.-M. Liu, H. J. Snaith, C.-S. Lee, T. C. Sum, F. Gao, Adv. Energy Mater. 2018, 8, 1800185.
- 53G. Wu, X. Li, J. Zhou, J. Zhang, X. Zhang, X. Leng, P. Wang, M. Chen, D. Zhang, K. Zhao, S. Liu, H. Zhou, Y. Zhang, Adv. Mater. 2019, 31, 1903889.
- 54Z. Qu, Y. Zhao, F. Ma, L. Mei, X.-K. Chen, H. Zhou, X. Chu, Y. Yang, Q. Jiang, X. Zhang, J. You, Nat. Commun. 2024, 15, 8620.
- 55D. Meggiolaro, S. G. Motti, E. Mosconi, A. J. Barker, J. Ball, C. Andrea Riccardo Perini, F. Deschler, A. Petrozza, F. De Angelis, Energy Environ. Sci. 2018, 11, 702–713.
- 56Z. Ni, H. Jiao, C. Fei, H. Gu, S. Xu, Z. Yu, G. Yang, Y. Deng, Q. Jiang, Y. Liu, Y. Yan, J. Huang, Nat. Energy 2022, 7, 65–73.
- 57N. Li, Z. Shi, C. Fei, H. Jiao, M. Li, H. Gu, S. P. Harvey, Y. Dong, M. C. Beard, J. Huang, Nat. Energy 2024, 9, 1264–1274.
- 58M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y.-L. Loo, J. M. Luther, et al., Nat. Energy 2020, 5, 35–49.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.