Spin Polarization-Boosting Ultrafast Carrier Dynamics and Exciton Dissociation in Fe Nanoparticle-Loading Graphitic Carbon Nitride Toward Efficient CO2 Photoreduction
Haoqiang Chi
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorYecheng Leng
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
Search for more papers by this authorCheng Ding
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorTianhao Li
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
Search for more papers by this authorYongcai Zhang
Chemistry Interdisplinary Research Center, Yangzhou University, Yangzhou, 225012 Jiangsu, P.R. China
Search for more papers by this authorJunyang Yuan
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Wenguang Tu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorWa Gao
School of Physical Science and Technology, Tiangong University, Tianjin, 300387 P.R. China
Search for more papers by this authorYingfang Yao
College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 Jiangsu, P.R. China
Search for more papers by this authorCorresponding Author
Xi Zhu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yong Zhou
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorZhigang Zou
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
Search for more papers by this authorHaoqiang Chi
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorYecheng Leng
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
Search for more papers by this authorCheng Ding
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorTianhao Li
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
Search for more papers by this authorYongcai Zhang
Chemistry Interdisplinary Research Center, Yangzhou University, Yangzhou, 225012 Jiangsu, P.R. China
Search for more papers by this authorJunyang Yuan
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Wenguang Tu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorWa Gao
School of Physical Science and Technology, Tiangong University, Tianjin, 300387 P.R. China
Search for more papers by this authorYingfang Yao
College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 Jiangsu, P.R. China
Search for more papers by this authorCorresponding Author
Xi Zhu
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yong Zhou
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorZhigang Zou
School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P.R. China
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, P.R. China
Search for more papers by this authorH.C. and Y.L. contributed equally to this work.
Abstract
The regulation of exciton properties plays a crucial role in enhancing the activity of photocatalysts, primarily due to the rapid recombination of photoinduced electron–hole pairs caused by the strong Coulomb interaction between them. In this study, we explore the spin polarization effect in nanohybrids composed of graphitic carbon nitride (g-C₃N₄) and iron (Fe) nanoparticles, which accelerates exciton dissociation and spin-selective electron transfer, thereby improving the selective photoreduction of CO₂ into CO. Mechanistic studies reveal that the Fe2⁺/Fe3⁺ redox pairs, embedded in the iron oxide layer on the surface of Fe nanoparticles, function as ultrafast charge transfer shuttles via a double exchange interaction (Fe2⁺─O─Fe3⁺). This process facilitates spin-selective electron transfer from g-C₃N₄ to Fe species, thereby contributing to the efficient conversion of CO₂. This work provides novel insights into the design of spin-dependent photocatalysts for efficient solar energy conversion.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202425630-sup-0001-SuppMat.docx19.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 2014, 26, 4607–4626.
- 2T. Banerjee, F. Podjaski, J. Kröger, B. P. Biswal, B. V. Lotsch, Nat. Rev. Mater. 2021, 6, 168–190.
- 3C. Ding, X. Lu, B. Tao, L. Yang, X. Xu, L. Tang, H. Chi, Y. Yang, D. M. Meira, L. Wang, X. Zhu, S. Li, Y. Zhou, Z. Zou, Adv. Funct. Mater. 2023, 33, 2302824.
- 4W. Xing, F. Ma, Z. Li, A. Wang, M. Liu, J. Han, G. Wu, W. Tu, J. Mater. Chem. A 2022, 10, 18333–18342.
- 5L. Wang, B. Zhu, J. Zhang, J. B. Ghasemi, M. Mousavi, J. Yu, Matter 2022, 5, 4187–4211.
- 6W. Tu, Y. Yang, C. Chen, T. Zhou, T. Li, H. Wang, S. Wu, Y. Zhou, D. O'Hare, Z. Zou, R. Xu, Small Struct. 2023, 4, 2200233.
- 7K. Brettel, W. Leibl, Biochim. Biophys. Acta 2001, 1507, 100–114.
- 8X. Qin, M. Suga, T. Kuang, J.-R. Shen, Science 2015, 348, 989–995.
- 9I. Carmeli, K. S. Kumar, O. Heifler, C. Carmeli, R. Naaman, Angew. Chem., Int. Ed. 2014, 53, 8953–8958.
- 10Y.-N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng, J. Jiang, H.-L. Jiang, J. Am. Chem. Soc. 2020, 142, 16723–16731.
- 11K. Sun, Y. Huang, Q. Wang, W. Zhao, X. Zheng, J. Jiang, H.-L. Jiang, J. Am. Chem. Soc. 2024, 146, 3241–3249.
- 12W. Gao, R. Peng, Y. Yang, X. Zhao, C. Cui, X. Su, W. Qin, Y. Dai, Y. Ma, H. Liu, Y. Sang, ACS Energy Lett. 2021, 6, 2129–2137.
- 13R. Naaman, D. H. Waldeck, J. Phys. Chem. Lett. 2012, 3, 2178–2187.
- 14W. Mtangi, F. Tassinari, K. Vankayala, A. Vargas Jentzsch, B. Adelizzi, A. R. A. Palmans, C. Fontanesi, E. W. Meijer, R. Naaman, J. Am. Chem. Soc. 2017, 139, 2794–2798.
- 15L. Pan, M. Ai, C. Huang, L. Yin, X. Liu, R. Zhang, S. Wang, Z. Jiang, X. Zhang, J.-J. Zou, W. Mi, Nat.Commun 2020, 11, 418.
- 16J. Li, D. Chu, H. Dong, D. R. Baker, R. Jiang, J. Am. Chem. Soc. 2020, 142, 50–54.
- 17A. I. Yurii, N. S. Yu, Phys.-Usp 2001, 44, 109.
10.1070/PU2001v044n02ABEH000840 Google Scholar
- 18Q. Hou, M. Qi, J. Magn. Magn. Mater. 2022, 554, 169305.
- 19Y. O. Kvashnin, R. Cardias, A. Szilva, I. Di Marco, M. I. Katsnelson, A. I. Lichtenstein, L. Nordström, A. B. Klautau, O. Eriksson, Phys. Rev. Lett. 2016, 116, 217202.
- 20L. Hou, L. Shi, J. Zhao, S. Pan, Y. Xin, X. Yuan, J. Phys. Chem. C 2020, 124, 15399–15405.
- 21X. Peng, Y. Guo, Q. Yin, J. Wu, J. Zhao, C. Wang, S. Tao, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 139, 5242–5248.
- 22J. Li, J. Ma, K. Du, E. Zhao, J. Guo, J. Mao, T. Ling, Chem. Commun. 2020, 56, 15004–15007.
- 23X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian, X. Liu, C. Shen, J. Gracia, H.-J. Gao, H. Yang, Z. J. Xu, Nat.Commun 2021, 12, 2608.
- 24G. Zhou, P. Wang, B. Hu, X. Shen, C. Liu, W. Tao, P. Huang, L. Liu, Nat.Commun 2022, 13, 4106.
- 25A. I. Gaudette, I.-R. Jeon, J. S. Anderson, F. Grandjean, G. J. Long, T. D. Harris, J. Am. Chem. Soc. 2015, 137, 12617–12626.
- 26O. Pana, A. Petran, A. Popa, M. Stefan, T. D. Silipas, C. Leostean, B. S. Vasile, F. Pogacean, D. Toloman, J. Alloys Compd. 2024, 986, 174168.
- 27H. Guo, X. Wang, H. Wang, W. Cui, M. Li, W. Xie, Chem. Eng. J. 2022, 433, 134490.
- 28W. Tu, Y. Xu, J. Wang, B. Zhang, T. Zhou, S. Yin, S. Wu, C. Li, Y. Huang, Y. Zhou, Z. Zou, J. Robertson, M. Kraft, R. Xu, ACS Sustainable Chem. Eng. 2017, 5, 7260–7268.
- 29J.-C. Wang, J. Ren, H.-C. Yao, L. Zhang, J.-S. Wang, S.-Q. Zang, L.-F. Han, Z.-J. Li, J. Hazard. Mater. 2016, 311, 11–19.
- 30K. Wang, Y. Si, Z. Lv, T. Yu, X. Liu, G. Wang, G. Xie, L. Jiang, Int. J. Hydrog. Energy 2020, 45, 2504.
- 31L. Long, G. Lv, Q. Han, X. Wu, Y. Qian, D. Wang, Y. Zhou, Z. Zou, J. Phys. Chem. C 2021, 125, 23142–23152.
- 32L. Zhang, L. Zhang, S. Xiao, Sci. Bull. 2008, 53, 1133–1137.
- 33G. Xiao, C. L. Chien, Appl. Phys. Lett. 1987, 51, 1280–1282.
- 34L. Li, X. Zhang, M. Humayun, X. Xu, Z. Shang, Z. Li, M. F. Yuen, C. Hong, Z. Chen, J. Zeng, M. Bououdina, K. Temst, X. Wang, C. Wang, ACS Nano 2024, 18, 1214–1225.
- 35J. Dai, Y. Tong, L. Zhao, Z. Hu, C. T. Chen, C. Y. Kuo, G. Zhan, J. Wang, X. Zou, Q. Zheng, W. Hou, R. Wang, K. Wang, R. Zhao, X. K. Gu, Y. Yao, L. Zhang, Nat. Commun. 2024, 15, 88.
- 36A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C. N. R. Rao, Phys. Rev. B 2006, 74, 16.
- 37J. W. DuanMu, Z. Z. Wu, F. Y. Gao, P. P. Yang, Z. Z. Niu, Y. C. Zhang, L. P. Chi, M. R. Gao, Precis Chem 2024, 2, 151–160.
- 38W. Lyu, Y. Liu, J. Zhou, D. Chen, X. Zhao, R. Fang, F. Wang, Y. Li, Angew. Chem., Int. Ed. 2023, 62, e202310733.
- 39Y. Yu, X. Dong, P. Chen, Q. Geng, H. Wang, J. Li, Y. Zhou, F. Dong, ACS Nano 2021, 15, 14453–14464.
- 40S. Si, H. Shou, Y. Mao, X. Bao, G. Zhai, K. Song, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, L. Song, B. Huang, H. Cheng, Angew. Chem., Int. Ed. 2022, 61, e202209446.
- 41L. Su, P. Wang, X. Ma, J. Wang, S. Zhan, Angew. Chem., Int. Ed. 2021, 60, 21261–21266.
- 42F. N. Skomurski, S. Kerisit, K. M. Rosso, Geochim Cosmochim Ac 2010, 74, 4234–4248.
- 43A. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937–942.
- 44H. Guo, X. Wang, H. Wang, W. Cui, M. Li, W. Xie, Chem. Eng. J 2022, 433, 134490.
- 45Z. Xin, X. Dong, Y. R. Wang, Q. Wang, K. Shen, J. W. Shi, Y. Chen, Y. Q. Lan, Adv. Sci. 2023, 10, 21.
- 46R. J. Ran, J. Zhang, J. G. Yu, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2014, 43, 7787–7812.
- 47W. Wang, C. Deng, S. Xie, Y. Li, W. Zhang, H. Sheng, C. Chen, J. Zhao, J. Am. Chem. Soc. 2021, 143, 2984–2993.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.