Design of High-Performance Infrared Nonlinear Optical PAs3S3 with Perfectly Aligned Polar Molecular Cage via a Bipolar-Axis-Symmetry Coupling Strategy
Chao Wang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Chensheng Lin
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Xin Zhao
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Shunda Yang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorProf. Tao Yan
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorProf. Shenghao Fang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorLingli Wu
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Ning Ye
Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Min Luo
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorChao Wang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Chensheng Lin
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Xin Zhao
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Shunda Yang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorProf. Tao Yan
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorProf. Shenghao Fang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorLingli Wu
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Ning Ye
Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Min Luo
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorAbstract
Strong polar molecular cages have recently emerged as novel functional building units for high-performance infrared nonlinear optical (IR NLO) crystals. However, these highly polar molecular cages often arrange themselves in a way that cancels out their polarity, leading to a more energetically stable state. As a result, most cage crystal formations tend to crystallize in centrosymmetric space groups, which conflicts with the primary requirement for NLO crystals. Herein, we address the challenge of polar molecular cage arrangement through bipolar-axis-symmetry coupling strategy, utilizing classical NLO parent compounds. By substituting the C3v symmetric [B3O6] groups with polar C3v symmetric [PAs3S3] cages within the β-BBO polar aixs lattice, we successfully synthesized a new compound, PAs3S3 (PAS), which exhibits a consistent arrangement of polar molecular cages — crucial for maximizing NLO performance. Additionally, due to the non-covalent interactions among [PAs3S3] polar molecular cages, PAS demonstrates an unexpectedly strong second harmonic generation (SHG) about 8 times that of AgGaS2, along with a significant band gap of 2.75 eV. Furthermore, PAS exhibits remarkable stability against air and moisture. These findings validate our design strategy and position PAS as a promising candidate for applications in IR NLO crystals.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202421825-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Gmachl, F. Capasso, R. Kohler, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, IEEE Circuits Devices Mag. 2000, 16, 10–18;
- 1bD. F. Eaton, Science 1991, 253, 281–287;
- 1cL. Luo, L. Wang, J. Chen, J. Zhou, Z. Yang, S. Pan, J. Li, J. Am. Chem. Soc. 2022, 144, 21916–21925;
- 1dF. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, IEEE J. Quantum Electron. 2002, 38, 511–532;
- 1eX. Chen, Q. Jing, K. M. Ok, Angew. Chem. Int. Ed. 2020, 59, 20323–20327;
- 1fU. Willer, M. Saraji, A. Khorsandi, P. Geiser, W. Schade, Opt. Lasers Eng. 2006, 44, 699–710;
- 1gS. Affan Ahmed, M. Mohsin, S. M. Zubair Ali, Def. Technol. 2021, 17, 583–592.
- 2Akiko Harasaki, K. Kato, Jpn. J. Appl. Phys. 1997, 36, 700.
- 3G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, C. L. Marquardt, Appl. Opt. 1993, 32, 3948–3951.
- 4P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, E. P. Chicklis, J. Opt. Soc. Am. B 2000, 17, 723–728.
- 5
- 5aT. Κ. Chattopadhyay, W. May, H. G. v. Schnering, G. S. Pawley, Z. Kristallogr. 1983, 165, 47–64;
- 5bP. C. Minshall, G. M. Sheldrick, Acta Crystallogr. Sect. B 1978, 34, 1326–1328;
- 5cA. M. Griffin, G. M. Sheldrick, Acta Crystallogr. Sect. B 1975, 31, 2738–2740;
- 5dT. Rödl, A. Pfitzner, Z. Anorg. Allg. Chem. 2011, 637, 1507–1510;
- 5eA. Vos, E. H. Wiebenga, Acta Crystallogr. 1955, 8, 217–223;
- 5fH. J. Whitfield, J. Chem. Soc. Dalton Trans. 1973, 1737–1738;
- 5gP. Bonazzi, S. Menchetti, G. Pratesi, Am. Mineral. 1995, 80, 400–403;
- 5hH. J. Whitfield, J. Chem. Soc. Dalton Trans. 1973, 1740–1742.
- 6X. Zhao, C. Lin, C. Wang, H. Tian, T. Yan, B. Li, N. Ye, M. Luo, Angew. Chem. Int. Ed. 2024, 63, e202319424.
- 7X. Zhao, C. Lin, S. Yang, H. Tian, C. Wang, T. Yan, J. Zhang, B. Li, N. Ye, M. Luo, Inorg. Chem. Front. 2023, 10, 1119–1126.
- 8C. Chen, B. Wu, A.-D. Jiang, G. You, Sci. China Ser. B 1985, 28, 235–243.
- 9C. Chen, Y. Wu, R. Li, Int. Rev. Phys. Chem. 1989, 8, 65–91.
- 10A. D. F. Toy, in The Chemistry of Phosphorus, Vol. 3 (Ed.: A. D. F. Toy), Pergamon, 1973, pp. 445–451.
- 11
- 11aR. Blachnik, U. Wickelund, P. Schmitt, Z. Naturforsch. B 1984, 39, 1135–1138;
- 11bR. O. Jones, G. Seifert, J. Chem. Phys. 1992, 96, 2942–2950;
- 11cR. Blachnik, Thermochim. Acta 1993, 213, 241–259.
- 12W. Cai, A. Abudurusuli, C. Xie, E. Tikhonov, J. Li, S. Pan, Z. Yang, Adv. Funct. Mater. 2022, 32, 2200231.
- 13A. O. Lyakhov, A. R. Oganov, H. T. Stokes, Q. Zhu, Comput. Phys. Commun. 2013, 184, 1172–1182.
- 14
- 14aH. Tian, N. Ye, M. Luo, Angew. Chem. Int. Ed. 2022, 61;
- 14bY. Zhou, N. He, Z. Lin, X. Shang, X. Chen, Y. Li, W. Huang, M. Hong, S. Zhao, J. Luo, Small 2023, 20.
- 15
- 15aD. Chandler, J. D. Weeks, H. C. Andersen, Science 1983, 220, 787–794;
- 15bS. S. Batsanov, Inorg. Mater. 2001, 37, 871–885.
- 16T. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539–555.
- 17D. N. Nikogosyan, Nonlinear optical crystals: a complete survey, Springer Science & Business Media, 2006.
- 18
- 18aG. C. Catella, D. Burlage, MRS Bull. 1998, 23, 28–36;
- 18bG. A. Medvedkin, V. G. Voevodin, J. Opt. Soc. Am. B 2005, 22, 1884–1898.
- 19
- 19aM. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045–1097;
- 19bW. Kohn, Rev. Mod. Phys. 1999, 71, 1253–1266.
- 20S. K. Kurtz, T. T. Perry, J. Appl. Phys. 1968, 39, 3798–3813.
- 21
- 21aZ.-T. Lu, Z.-D. Sun, Y. Chi, H.-G. Xue, S.-P. Guo, Inorg. Chem. 2019, 58, 4619–4625;
- 21bS.-P. Guo, Z.-D. Sun, Y. Chi, H.-G. Xue, Inorg. Chem. 2018, 57, 11282–11288;
- 21cS. P. Guo, Y. Chi, H. G. Xue, Angew. Chem., Int. Ed. 2018, 130, 11714–11717.
- 22
- 22aJ. Chen, H. Chen, F. Xu, L. Cao, X. Jiang, S. Yang, Y. Sun, X. Zhao, C. Lin, N. Ye, J. Am. Chem. Soc. 2021, 143, 10309–10316;
- 22bY. Sun, J. Chen, S. Yang, B. Li, G. Chai, C. Lin, M. Luo, N. Ye, Adv. Opt. Mater. 2021, 9, 2002176;
- 22cK. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, F. Kenneth Hopkins, J. Cryst. Growth 2010, 312, 1127–1132.
- 23J. Zhang, T. Lu, Phys. Chem. Chem. Phys. 2021, 23, 20323–20328.
- 24A. D. Buckingham, P. W. Fowler, J. M. Hutson, Chem. Rev. 1988, 88, 963–988.
- 25
- 25aM.-Y. Li, Z. Ma, B. Li, X.-T. Wu, H. Lin, Q.-L. Zhu, Chem. Mater. 2020, 32, 4331–4339;
- 25bW. Xing, N. Wang, C. Tang, C. Li, Z. Lin, J. Yao, W. Yin, B. Kang, J. Mater. Chem. C 2021, 9, 1062–1068;
- 25cY. Chu, P. Wang, H. Zeng, S. Cheng, X. Su, Z. Yang, J. Li, S. Pan, Chem. Mater. 2021, 33, 6514–6521.
- 26Deposition number 2383245 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.