Polyurethane Elastomers Strengthened by Pseudo[1]rotaxanes Based on Pillararenes
Lang He
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorJialin Wei
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorZhiqiang Ren
School of Materials Science and Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorDr. Yunxia Li
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Zibin Zhang
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorDr. Guangfeng Li
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P. R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P. R. China
Search for more papers by this authorProf. Dr. Feihe Huang
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P. R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shijun Li
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorLang He
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorJialin Wei
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorZhiqiang Ren
School of Materials Science and Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorDr. Yunxia Li
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Zibin Zhang
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorDr. Guangfeng Li
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P. R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P. R. China
Search for more papers by this authorProf. Dr. Feihe Huang
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058 P. R. China
Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shijun Li
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorAbstract
As a unique property of the interlocked structures, rotaxane allows for intramolecular motions between its wheel and axle components. Introduction of rotaxanes into polymers can endow them with distinctive macroscopic features and outstanding mechanical properties. Here, we prepare a copillar[5]arene with a hydroxyl and an amino-group on each end, which can spontaneously form a pseudo[1]rotaxane through intramolecular hydrogen bonds. This pseudo[1]rotaxane possesses a releasable extra alkyl chain, which is then incorporated into a linear polyurethane by reacting with a diisocyanate to prepare polyurethane elastomers with spring-like structures. The results of stress-strain test and dynamic mechanical analysis all indicate that sliding motions of the axle part on the pseudo[1]rotaxane in the polymer skeleton can greatly dissipate energy, which endows the elastomers with higher toughness and better fatigue resistance. Moreover, the addition of moderate amount of cuprous bromide to form cuprous-thioether coordination in the polymers can further improve the mechanical properties.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202421557-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. A. Bissell, E. Córdova, A. E. Kaifer, J. F. Stoddart, Nature 1994, 369, 133–137;
- 1bX. Li, A. H. G. David, L. Zhang, B. Song, Y. Jiao, D. Sluysmans, Y. Qiu, Y. Wu, X. Zhao, Y. Feng, L. Mosca, J. F. Stoddart, J. Am. Chem. Soc. 2022, 144, 3572–3579;
- 1cY. Qiu, B. Song, C. Pezzato, D. Shen, W. Liu, L. Zhang, Y. Feng, Q.-H. Guo, K. Cai, W. Li, H. Chen, M. T. Nguyen, Y. Shi, C. Cheng, R. D. Astumian, X. Li, J. F. Stoddart, Science 2020, 368, 1247–1253;
- 1dN. N. Bach, V. Josef, H. Maid, H. Dube, Angew. Chem. Int. Ed. 2022, 61, e202201882.
- 2
- 2aX. Dong, Z. Zhang, H. Xiao, G. Liu, S.-N. Lei, Z. Wang, X. Yan, S. Wang, C.-H. Tung, L.-Z. Wu, H. Cong, Angew. Chem. Int. Ed. 2024, 63, e202318368;
- 2bZ. Luo, X. Zhang, J. Zhao, R. Bai, C. Wang, Y. Wang, D. Zhao, X. Yan, Angew. Chem. Int. Ed. 2023, 62, e202306489;
- 2cM. Zhang, G. De Bo, J. Am. Chem. Soc. 2019, 141, 15879–15883;
- 2dX. Xiong, Y. Chen, Z. Wang, H. Liu, M. Le, C. Lin, G. Wu, L. Wang, X. Shi, Y.-G. Jia, Y. Zhao, Nat. Commun. 2023, 14, 1331;
- 2eY. Akae, J. Sawada, K. Nakajima, T. Takata, Angew. Chem. Int. Ed. 2023, 62, e202303341;
- 2fH. Yokochi, R. T. O'Neill, T. Abe, D. Aoki, R. Boulatov, H. Otsuka, J. Am. Chem. Soc. 2023, 145, 23794–23801;
- 2gT. Muramatsu, Y. Okado, H. Traeger, S. Schrettl, N. Tamaoki, C. Weder, Y. Sagara, J. Am. Chem. Soc. 2021, 143, 9884–9892;
- 2hA. Bin Imran, K. Esaki, H. Gotoh, T. Seki, K. Ito, Y. Sakai, Y. Takeoka, Nat. Commun. 2014, 5, 5124;
- 2iZ. Zhang, J. Zhao, X. Yan, Acc. Chem. Res. 2024, 57, 992–1006.
- 3
- 3aZ. Wang, X. Zheng, T. Ouchi, T. B. Kouznetsova, H. K. Beech, S. Av-Ron, T. Matsuda, B. H. Bowser, S. Wang, J. A. Johnson, J. A. Kalow, B. D. Olsen, J. P. Gong, M. Rubinstein, S. L. Craig, Science 2021, 374, 193–196;
- 3bY. Wang, Z. Zhang, H. Zhang, J. Zhao, G. Liu, R. Bai, Y. Liu, W. You, W. Yu, X. Yan, Chem 2023, 9, 2206–2221;
- 3cS.-W. Zhou, D. Zhou, R. Gu, C.-S. Ma, C. Yu, D.-H. Qu, Nat. Commun. 2024, 15, 1690.
- 4
- 4aJ. Zhao, Z. Zhang, L. Cheng, R. Bai, D. Zhao, Y. Wang, W. Yu, X. Yan, J. Am. Chem. Soc. 2022, 144, 872–882;
- 4bX. Yang, L. Cheng, Z. Zhang, J. Zhao, R. Bai, Z. Guo, W. Yu, X. Yan, Nat. Commun. 2022, 13, 6654;
- 4cR. Bai, W. Wang, W. Gao, M. Yang, X. Zhang, C. Wang, Z. Fan, L. Yang, Z. Zhang, X. Yan, Angew. Chem. Int. Ed. 2024, 63, e202410127;
- 4dL. Yang, Y. Wang, G. Liu, J. Zhao, L. Cheng, Z. Zhang, R. Bai, Y. Liu, M. Yang, W. Yu, X. Yan, Angew. Chem. Int. Ed. 2024, 63, e202410834.
- 5
- 5aA. Miyawaki, P. Kuad, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2008, 130, 17062–17069;
- 5bC. Zong, M. J. Wu, J. Z. Qin, A. J. Link, J. Am. Chem. Soc. 2017, 139, 10403–10409;
- 5cM. Gauthier, K. Fournel-Marotte, C. Clavel, P. Waelès, P. Laurent, F. Coutrot, Angew. Chem. Int. Ed. 2023, 62, e202310643.
- 6
- 6aT. M. Khang, P. Q. Nhien, T. T. K. Cuc, C.-C. Weng, C.-H. Wu, J. I. Wu, B. T. B. Hue, Y.-K. Li, H.-C. Lin, Small 2023, 19, 2205597;
- 6bK. Hiratani, M. Kaneyama, Y. Nagawa, E. Koyama, M. Kanesato, J. Am. Chem. Soc. 2004, 126, 13568–13569;
- 6cN. T. Trung, C.-H. Chiu, T. T. K. Cuc, T. M. Khang, S. Jalife, P. Q. Nhien, B. T. B. Hue, J. I. Wu, Y.-K. Li, H.-C. Lin, Adv. Mater. 2024, 36, 2311789;
- 6dN. Pairault, A. Bessaguet, R. Barat, L. Frédéric, G. Pieters, J. Crassous, I. Opalinski, S. Papot, Chem. Sci. 2021, 12, 2521–2526;
- 6eA. Saura-Sanmartin, A. Martinez-Cuezva, A. Pastor, D. Bautista, J. Berna, Org. Biomol. Chem. 2018, 16, 6980–6987;
- 6fC.-W. Chu, D. L. Stares, C. A. Schalley, Chem. Commun. 2021, 57, 12317–12320;
- 6gF. Saito, J. W. Bode, Chem. Sci. 2017, 8, 2878–2884;
- 6hT. M. Khang, P. Q. Nhien, T. T. K. Cuc, C.-H. Wu, B. T. B. Hue, J. I. Wu, Y.-K. Li, H.-C. Lin, Chem. Commun. 2023, 59, 466–469;
- 6iQ. Zhou, P. Wei, Y. Zhang, Y. Yu, X. Yan, Org. Lett. 2013, 15, 5350–5353.
- 7
- 7aX. Song, X. Zhu, S. Wu, W. Chen, W. Tian, M. Liu, Chirality 2023, 35, 692–699;
- 7bX. Ma, Q. Wang, H. Tian, Tetrahedron Lett. 2007, 48, 7112–7116;
- 7cS. Tsuda, J. Terao, K. Tsurui, N. Kambe, Chem. Lett. 2009, 38, 190–191;
- 7dL. Zhu, H. Yan, Y. Zhao, Int. J. Mol. Sci. 2012, 13, 10132–10142;
- 7eA. Miyawaki, P. Kuad, Y. Takashima, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2008, 130, 17062–17069.
- 8
- 8aC. Gaeta, M. O. Vysotsky, A. Bogdan, V. Böhmer, J. Am. Chem. Soc. 2005, 127, 13136–13137;
- 8bR. Sun, C. Xue, X. Ma, M. Gao, H. Tian, Q. Li, J. Am. Chem. Soc. 2013, 135, 5990–5993;
- 8cG. Orlandini, L. Casimiro, M. Bazzoni, B. Cogliati, A. Credi, M. Lucarini, S. Silvi, A. Arduini, A. Secchi, Org. Chem. Front. 2020, 7, 648–659;
- 8dG. Cera, A. Arduini, A. Secchi, A. Credi, S. Silvi, Chem. Rec. 2021, 21, 1161–1181.
- 9
- 9aA. Del Mauro, Z. Kokan, V. Šindelář, Chem. Commun. 2022, 58, 3815–3818;
- 9bJ.-X. Liu, K. Chen, C. Redshaw, Chem. Soc. Rev. 2023, 52, 1428–1455;
- 9cQ. Chen, Y. Lei, G. Wu, Q. Li, Y. Pan, H. Li, Chem. Sci. 2022, 13, 798–803;
- 9dD. Sigwalt, M. Šekutor, L. Cao, P. Y. Zavalij, J. Hostaš, H. Ajani, P. Hobza, K. Mlinarić-Majerski, R. Glaser, L. Isaacs, J. Am. Chem. Soc. 2017, 139, 3249–3258;
- 9eJ. Krämer, L. M. Grimm, C. Zhong, M. Hirtz, F. Biedermann, Nat. Commun. 2023, 14, 518;
- 9fC. J. Bruns, H. Liu, M. B. Francis, J. Am. Chem. Soc. 2016, 138, 15307–15310.
- 10
- 10aK. Nakazono, T. Ogawa, T. Takata, Mater. Chem. Front. 2019, 3, 2716–2720;
- 10bT. Ogawa, N. Usuki, K. Nakazono, Y. Koyama, T. Takata, Chem. Commun. 2015, 51, 5606–5609;
- 10cT. Ogawa, K. Nakazono, D. Aoki, S. Uchida, T. Takata, ACS Macro Lett. 2015, 4, 343–347;
- 10dZ. Cao, D. Wu, M. Li, F. Yang, Z. Li, W. An, S. Jiang, X. Zheng, C. Niu, D. Qu, Chin. Chem. Lett. 2022, 33, 1533–1536;
- 10eS. Ishino, H. Masai, S. Shimada, J. Terao, Tetrahedron Lett. 2020, 61, 152061.
- 11
- 11aT. Ogoshi, T.-a. Yamagishi, Y. Nakamoto, Chem. Rev. 2016, 116, 7937–8002;
- 11bK. Kato, S. Fa, S. Ohtani, T.-h. Shi, A. M. Brouwer, T. Ogoshi, Chem. Soc. Rev. 2022, 51, 3648–3687;
- 11cD. Xia, P. Wang, X. Ji, N. M. Khashab, J. L. Sessler, F. Huang, Chem. Rev. 2020, 120, 6070–6123;
- 11dY. Chao, T. U. Thikekar, W. Fang, R. Chang, J. Xu, N. Ouyang, J. Xu, Y. Gao, M. Guo, H. Zuilhof, A. C.-H. Sue, Angew. Chem. Int. Ed. 2022, 61, e202204589;
- 11eM. Guo, X. Wang, C. Zhan, P. Demay-Drouhard, W. Li, K. Du, M. A. Olson, H. Zuilhof, A. C. H. Sue, J. Am. Chem. Soc. 2018, 140, 74–77;
- 11fZ. Zhang, B. Xia, C. Han, Y. Yu, F. Huang, Org. Lett. 2010, 12, 3285–3287;
- 11gK. Wang, M. Zuo, T. Zhang, H. Yue, X.-Y. Hu, Chin. Chem. Lett. 2023, 34, 107848;
- 11hY. Zhang, P. Zhang, Y. Lv, J. Liu, Y. Zhou, Z. Zhang, J. Huang, ACS Appl. Bio Mater. 2024, 7, 7730–7739;
- 11iY. Yao, P. Zhang, D. Zhou, Z. Lai, S. Li, F. Huang, Z. Zhang, Chin. Chem. Lett. 2024, 35, 108712;
- 11jL. He, J. Wei, Z. Zhang, N. Shentu, J. Wang, J. Yu, Z. Ren, J. Liu, G. Li, F. Huang, S. Li, Macromolecules 2024, 57, 7777–7786.
- 12
- 12aX. Wu, L. Gao, J. Sun, X.-Y. Hu, L. Wang, Chin. Chem. Lett. 2016, 27, 1655–1660;
- 12bW.-X. Zhang, L.-Z. Liu, W.-G. Duan, Q.-Q. Zhou, C.-G. Ma, Y. Huang, Molecules 2019, 24, 2693;
- 12cC.-L. Sun, J.-F. Xu, Y.-Z. Chen, L.-Y. Niu, L.-Z. Wu, C.-H. Tung, Q.-Z. Yang, Chin. Chem. Lett. 2015, 26, 843–846;
- 12dX. Wu, M. Ni, W. Xia, X.-Y. Hu, L. Wang, Org. Chem. Front. 2015, 2, 1013–1017;
- 12eH. Tian, R. Li, P.-H. Lin, K. Meguellati, New J. Chem. 2020, 44, 10628–10632.
- 13
- 13aL. Yang, C.-Y. Nie, Y. Han, J. Sun, C.-G. Yan, J. Inclusion Phenom. Macrocyclic Chem. 2022, 102, 89–97;
- 13bD. Li, Y. Han, J. Sun, C.-G. Yan, J. Inclusion Phenom. Macrocyclic Chem. 2022, 102, 819–829;
- 13cS. Jiang, Y. Han, L.-L. Zhao, J. Sun, C.-G. Yan, Supramol. Chem. 2018, 30, 642–647;
- 13dY. Han, C.-Y. Nie, S. Jiang, J. Sun, C.-G. Yan, Chin. Chem. Lett. 2020, 31, 725–728;
- 13eY. Han, G.-F. Huo, J. Sun, J. Xie, C.-G. Yan, Y. Zhao, X. Wu, C. Lin, L. Wang, Sci. Rep. 2016, 6, 28748;
- 13fA. Nazarova, P. Padnya, P. J. Cragg, I. Stoikov, New J. Chem. 2022, 46, 2033–2037.
- 14
- 14aR. Zhang, C. Wang, R. Long, T. Chen, Y. J. F. i C Yao, Front. Chem. 2019, 7, 508;
- 14bY. Han, G.-F. Huo, J. Sun, C.-G. Yan, Y. Lu, C. Lin, L. Wang, Supramol. Chem. 2017, 29, 547–552.
- 15
- 15aJ. R. Black, N. R. Champness, W. Levason, G. Reid, J. Chem. Soc. Chem. Commun. 1995, 1277–1278;
- 15bA. M. Masdeu-Bultó, M. Diéguez, E. Martin, M. Gómez, Coord. Chem. Rev. 2003, 242, 159–201;
- 15cX. Huang, M. Yi, K. Tang, Chem. Eng. J. 2024, 495, 153555;
- 15dA. V. Davis, T. V. O′Halloran, Nat. Chem. Biol. 2008, 4, 148–151.
- 16
- 16aL. Song, T. Zhu, L. Yuan, J. Zhou, Y. Zhang, Z. Wang, C. Tang, Nat. Commun. 2019, 10, 1315;
- 16bM. Wu, J. Ma, X. Wu, J. Yang, Z. Wang, Composites Part B 2023, 263, 110876;
- 16cW. Mo, C. Zhuo, S. Liu, X. Wang, F. Wang, Polym. Chem. 2023, 14, 152–160;
- 16dJ. Zhang, M. Li, L. Cheng, T. Li, Polym. Chem. 2017, 8, 6527–6533.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.