Catalytic Enantioselective Synthesis of Boron-Stereogenic and Axially Chiral BODIPYs via Rhodium(II)-Catalyzed C−H (Hetero) Arylation with Diazonaphthoquinones and Diazoindenines
Yankun Gao
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
These authors contributed equally to this work.
Search for more papers by this authorZizhen Liu
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
These authors contributed equally to this work.
Search for more papers by this authorSichao Tian
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorYing Min
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorXiangyu Li
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorYuxi Chen
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorCorresponding Author
Prof. Xin Hong
Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorCorresponding Author
Prof. Weidong Zhang
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorCorresponding Author
Prof. Lei Wang
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, Hainan, 570311 China
Search for more papers by this authorYankun Gao
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
These authors contributed equally to this work.
Search for more papers by this authorZizhen Liu
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
These authors contributed equally to this work.
Search for more papers by this authorSichao Tian
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorYing Min
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorXiangyu Li
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorYuxi Chen
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorCorresponding Author
Prof. Xin Hong
Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorCorresponding Author
Prof. Weidong Zhang
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Search for more papers by this authorCorresponding Author
Prof. Lei Wang
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193 China
Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, Hainan, 570311 China
Search for more papers by this authorAbstract
The molecular engineering of boron dipyrromethenes (BODIPYs) has garnered widespread attention due to their structural diversity enabling tailored physicochemical properties for optimal applications. However, catalytic enantioselective synthesis of structurally diverse boron-stereogenic BODIPYs through intermolecular desymmetrization and BODIPYs with atroposelectivity remains elusive. Here, we showcase rhodium(II)-catalyzed site-specific C−H (hetero)arylations of prochiral BODIPYs and polysubstituted BODIPYs with diazonaphthoquinonesand diazoindenines, providing efficient pathways for the rapid assembly of versatile (hetero)arylated boron-stereogenic and axially chiral BODIPYs through long-range desymmetrization and axial rotational restriction modes. The synthetic application of the procedures has been emphasized by the efficient synthesis of BODIPY derivatives with various functions. Photophysical properties, bioimaging, and lipid droplet-specific targeting capability of tailored BODIPYs are also demonstrated, indicating their promising applications in biomedical research, medicinal chemistry, and material science.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202418888-sup-0001-misc_information.pdf20.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Pop, N. Zigon, N. Avarvari, Chem. Rev. 2019, 119, 8435–8478;
- 1bY. Chen, Mater. Today Chem. 2022, 23, 100651–100669.
- 2For different types of tetracoordinate boron complexes, see:
- 2aX. Li, G. Zhang, Q. Song, Chem. Commun. 2023, 59, 3812–3820;
- 2bM. Braun, Eur. J. Org. Chem. 2024, 27, e202400052;
- 2cN. Ishida, T. Moriya, T. Goya, M. Murakami, J. Org. Chem. 2010, 75, 8709–8712;
- 2dA. Solovyev, Q. Chu, S. Geib, L. Fensterbank, M. Malacria, D. Curran, J. Am. Chem. Soc. 2010, 132, 15072–15080;
- 2eL. Marciasini, B. Cacciuttolo, M. Vaultier, M. Pucheault, Org. Lett. 2015, 17, 3532–3535;
- 2fK. Yang, G. Zhang, Q. Song, Chem. Sci. 2018, 9, 7666–7672;
- 2gP. F. Kaiser, J. M. White, C. A. Hutton, J. Am. Chem. Soc. 2008, 130, 16450–16451;
- 2hB. Zu, Y. Guo, C. He, J. Am. Chem. Soc. 2021, 143, 16302–16310;
- 2iG. Zhang, Z. Zhang, M. Hou, X. Cai, K. Yang, P. Yu, Q. Song, Nat. Commun. 2022, 13, 2624;
- 2jY. Stöckl, E. J. Tait, W. Frey, S. Wegner, B. Claasen, A. Zens, S. Laschat, Chem. Eur. J. 2023, 29, e202301324;
- 2kG. Zhang, X. Cai, J. Jia, B. Feng, K. Yang, Q. Song, ACS Catal. 2023, 13, 9502–9508;
- 2lN. M. Ankudinov, A. A. Komarova, E. S. Podyacheva, D. A. Chusov, A. A. Danshina, D. S. Perekalin, Chem. Commun. 2024, 60, 8601–8604.
- 3For BODIPYs syntheses and applications, see:
- 3aA. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891–4932;
- 3bG. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184–1201;
- 3cN. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 2012, 41, 1130–1172;
- 3dM. Jurášek, S. Rimpelová, E. Kmoníčková, P. Drašar, T. Ruml, J. Med. Chem. 2014, 57, 7947–7954;
- 3eN. Boens, B. Verbelen, W. Dehaen, Eur. J. Org. Chem. 2015, 2015, 6577–6595;
- 3fH. Lu, J. Mack, T. Nyokong, N. Kobayashi, Z. Shen, Coord. Chem. Rev. 2016, 318, 1–15;
- 3gS. Kolemen, E. U. Akkaya, Coord. Chem. Rev. 2018, 354, 121–134;
- 3hR. Sola-Llano, J. Bañuelos, in: BODIPY Dyes—A Privilege Molecular Scaffold with Tunable Properties, IntechOpen, 2018, pp. 1–8;
- 3iN. Boens, B. Verbelen, M. Ortiz, L. Jiao, W. Dehaen, Coord. Chem. Rev. 2019, 399, 213024;
- 3jM. Poddar, R. Misra, Coord. Chem. Rev. 2020, 421, 213462;
- 3kJ. Zhang, N. Wang, X. Ji, Y. Tao, J. Wang, W. Zhao, Chem. Eur. J. 2020, 26, 4172–4192.
- 4
- 4aA. Guerrero-Corella, J. Asenjo-Pascual, T. J. Pawar, S. Díaz-Tendero, A. Martín-Sómer, C. V. Gómez, J. L. Belmonte-Vázquez, D. E. Ramírez-Ornelas, E. Peña-Cabrera, A. Fraile, D. C. Cruz, J. Alemán, Chem. Sci. 2019, 10, 4346–4351;
- 4bT. Rigotti, J. Asenjo-Pascual, A. Martín-Somer, P. M. Rois, M. Cordani, S. Díaz-Tendero, Á. Somoza, A. Frailea, J. Alemán, Adv. Synth. Catal. 2020, 362, 1345–1355;
- 4cM. Meazza, C. M. Cruz, A. M. Ortuño, J. M. Cuerva, L. Crovetto, R. Rios, Chem. Sci. 2021, 12, 4503–4508.
- 5
- 5aT. Bruhn, G. Pescitelli, S. Jurinovich, A. Schaumlöffel, F. Witterauf, J. Ahrens, M. Bröring, G. Bringmann, Angew. Chem. Int. Ed. 2014, 53, 14592–14595;
- 5bS. Kolemen, Y. Cakmak, Z. Kostereli, E. U. Akkaya, Org. Lett. 2014, 16, 660–663;
- 5cF. Zinna, T. Bruhn, C. A. Guido, J. Ahrens, M. Bröring, L. Di Bari, G. Pescitelli, Chem. Eur. J. 2016, 22, 16089–16098;
- 5dL. Cui, K. Deyama, T. Ichiki, Y. Konishi, A. Horioka, T. Harada, K. Ishibashi, Y. Hisaeda, T. Ono, J. Mater. Chem. C 2023, 11, 2574–2581.
- 6
- 6aC. Maeda, K. Nagahata, T. Shirakawa, T. Ema, Angew. Chem. Int. Ed. 2020, 59, 7813–7817;
- 6bZ. Wang, L. Huang, Y. Yan, A. M. El-Zohry, A. Toffoletti, J. Zhao, A. Barbon, B. Dick, O. F. Mohammed, G. Han, Angew. Chem. Int. Ed. 2020, 59, 16114–16121;
- 6cL.-Y. Wang, Z.-F. Liu, K.-X. Teng, L.-Y. Niu, Q.-Z. Yang, Chem. Commun. 2022, 58, 3807–3810.
- 7
- 7aB. Zu, Y. Guo, L.-Q. Ren, Y. Li, C. He, Nat. Synth. 2023, 2, 564–571;
- 7bL.-Q. Ren, B. Zhan, J. Zhao, Y. Guo, B. Zu, Y. Li, C. He, Nat. Chem. 2024, doi: 10.1038/s41557-024-01649-z.
- 8
- 8aM. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704–724;
- 8bH. M. L. Davies, D. Morton, Chem. Soc. Rev. 2011, 40, 1857–1869;
- 8cA. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981–10080;
- 8dK. Liao, S. Negretti, D. G. Musaev, J. Bacsa, H. M. L. Davies, Nature 2016, 533, 230–234;
- 8eK. Liao, T. C. Pickel, V. Boyarskikh, J. Bacsa, D. G. Musaev, H. M. L. Davies, Nature 2017, 551, 609–613;
- 8fY. Xia, D. Qiu, J. Wang, Chem. Rev. 2017, 117, 13810–13889;
- 8gJ. Fu, Z. Ren, J. Bacsa, D. G. Musaev, H. M. L. Davies, Nature 2018, 564, 395–399;
- 8hH. M. L. Davies, K. Liao, Nat. Chem. Rev. 2019, 3, 347–360;
- 8iY. He, Z. Huang, K. Wu, J. Ma, Y.-G. Zhou, Z. Yu, Chem. Soc. Rev. 2022, 51, 2759–2852;
- 8jM. Álvarez, A. Caballero, P. J. Pérez, in Transition Metal—Catalyzed Carbene Transformations, 2022, pp. 1–24.
- 9
- 9aL.-L. Yang, D. Evans, B. Xu, W.-T. Li, M.-L. Li, S.-F. Zhu, K. N. Houk, Q.-L. Zhou, J. Am. Chem. Soc. 2020, 142, 12394–12399;
- 9bM.-Y. Huang, S.-F. Zhu, Chem. Sci. 2021, 12, 15790–15801;
- 9cN. S. Greenwood, A. T. Champlin, J. A. Ellman, J. Am. Chem. Soc. 2022, 144, 17808–17814;
- 9dA.-C. Han, L.-J. Xiao, Q.-L. Zhou, J. Am. Chem. Soc. 2024, 146, 5643–5649.
- 10For Rh(II)-catalyze the formation of metal-carbene species with conjugated aromatic diazo quinones, see:
- 10aC. Pan, Z. Gu, Trends Chem. 2023, 5, 684–696;
- 10bK. Wu, C.-M. Che, Asian J. Org. Chem. 2024, 13, e202300664. For others transition metal-catalyze the formation of metal-carbene species with conjugated aromatic diazo quinones, see:
- 10cY.-S. Jang, Ł. Woźniak, J. Pedroni, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 12901–12905;
- 10dJ.-W. Zhang, F. Jiang, Y.-H. Chen, S.-H. Xiang, B. Tan, Sci. China Chem. 2021, 64, 1515–1521;
- 10eC. Pan, S. Y. Yin, S. B. Wang, Q. Gu, S. L. You, Angew. Chem. Int. Ed. 2021, 60, 15510–15516;
- 10fS.-Y. Yin, C. Pan, W.-W. Zhang, C.-X. Liu, F. Zhao, Q. Gu, S.-L. You, Org. Lett. 2022, 24, 3620–3625;
- 10gY. Xu, Y. Xiao, X. Zhang, X. Fan, Org. Lett. 2024, 26, 786–791.
- 11
- 11aZ. Li, Y. Chen, C. Wang, G. Xu, Y. Shao, X. Zhang, S. Tang, J. Sun, Angew. Chem. Int. Ed. 2021, 60, 25714–25718;
- 11bC. Niu, Y. Zhou, Q. Chen, Y. Zhu, S. Tang, Z.-X. Yu, J. Sun, Org. Lett. 2022, 24, 7428–7433.
- 12
- 12aQ. Ren, T. Cao, C. He, M. Yang, H. Liu, L. Wang, ACS Catal. 2021, 11, 6135–6140;
- 12bQ. Ren, M. Lang, H. Liu, X. Li, D. Wu, J. Wu, M. Yang, J. Wei, Z. Ren, L. Wang, Org. Lett. 2023, 25, 7745–7750.
- 13
- 13aU. Simon, O. Süs, L. Horner, Liebigs Ann. Chem. 1966, 697, 17–41;
- 13bG. Cirrincione, A. M. Almerico, G. Dattolo, E. Aiello, P. Diana, S. Grimaudo, P. Barraja, F. Mingoia, R. A. Gancitano, Eur. J. Med. Chem. 1994, 29, 889–891;
- 13cA. González, J. Granell, C. López, R. Bosque, L. Rodríguez, M. Font-Bardia, T. Calvet, X. Solans, J. Organomet. Chem. 2013, 726, 21–31.
- 14G. Traverso, F. Diehl, R. Hurst, A. Shuber, D. Whitney, C. Johnson, B. Levin, K. W. Kinzler, B. Vogelstein, Nat. Biotechnol. 2003, 21, 1093–1097.
- 15V. Sharma, P. Kumar, D. Pathak, J. Heterocycl. Chem. 2010, 47, 491–502.
- 16J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940.
- 17
- 17aHandbook of Hormones: Comparative Endocrinology for Basic and Clinical Research, 2nd ed., Subchapter 129F (Eds.: S. Miyagawa, T. Sato, T. Iguchi);
- 17bAcademic Press, Amsterdam, 2021..
- 18Deposition Numbers 2360409 (for 3 qa), 2360410 (for R-5 aa), 2360413 (for S-5 aa), 2360411 (for 7 aj), and 2360412 (for 11) contain contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 19S. Martin, R. G. Parton, Nat. Rev. Mol. Cell Biol. 2006, 7, 373–378.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.