Reversible Hydrogen Acceptor–Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis
Yuefei Li
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
These authors contributed equally to this work.
Search for more papers by this authorYe Liu
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024 China
These authors contributed equally to this work.
Search for more papers by this authorMingkai Zhang
School of Science, Xi'an University of Technology, Xi'an, 710048 China
Search for more papers by this authorLinsen Li
School of Chemical Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, Xi'an, 710048 China
Search for more papers by this authorProf. Zhao Jiang
School of Chemical Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, Xi'an, 710048 China
Search for more papers by this authorCorresponding Author
Dr. Bingying Han
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024 China
Search for more papers by this authorProf. Baojun Wang
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024 China
Search for more papers by this authorCorresponding Author
Prof. Jiayuan Li
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
Search for more papers by this authorYuefei Li
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
These authors contributed equally to this work.
Search for more papers by this authorYe Liu
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024 China
These authors contributed equally to this work.
Search for more papers by this authorMingkai Zhang
School of Science, Xi'an University of Technology, Xi'an, 710048 China
Search for more papers by this authorLinsen Li
School of Chemical Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, Xi'an, 710048 China
Search for more papers by this authorProf. Zhao Jiang
School of Chemical Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, Xi'an, 710048 China
Search for more papers by this authorCorresponding Author
Dr. Bingying Han
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024 China
Search for more papers by this authorProf. Baojun Wang
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024 China
Search for more papers by this authorCorresponding Author
Prof. Jiayuan Li
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
Search for more papers by this authorAbstract
Electrocatalytic nitrate reduction is a crucial process for sustainable ammonia production. However, to maximize ammonia yield efficiency, this technology inevitably operates at the potentials more negative than 0 V vs. RHE, leading to high energy consumption and competitive hydrogen evolution. To eradicate this issue, hydrogen tungsten bronze (HxWO3) as reversible hydrogen donor-acceptor is partnered with copper (Cu) to enable a relay mechanism at potentials positive than 0 V vs. RHE, which involves rapid intercalation of H into HxWO3 lattice, prompt de-intercalation of the lattice H and transfer onto Cu, and spontaneous H-mediated nitrate-to-ammonia conversion on Cu. The resulting catalysts demonstrated a high ammonia yield rate of 3332.9±34.1 mmol gcat−1 h−1 and a Faraday efficiency of ~100 % at 0.10 V vs. RHE, displaying a record-low estimated energy consumption of 17.6 kWh kgammonia−1. Using these catalysts, we achieve continuous ammonia production in an enlarged flow cell at a real energy consumption of 17.0 kWh kgammonia−1.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202417631-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, Nat. Catal. 2018, 1, 490–500;
- 1bC. Tang, S.-Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166–3180.
- 2
- 2aM. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara, H. Hosono, Nat. Chem. 2012, 4, 934–940;
- 2bA. J. Martín, T. Shinagawa, J. Pérez-Ramírez, Chem 2019, 5, 263–283.
- 3
- 3aJ. John, D. R. MacFarlane, A. N. Simonov, Nat. Catal. 2023, 6, 1125–1130;
- 3bY. Ren, C. Yu, L. Wang, X. Tan, Z. Wang, Q. Wei, Y. Zhang, J. Qiu, J. Am. Chem. Soc. 2022, 144, 10193–10200;
- 3cW. Liu, M. Xia, C. Zhao, B. Chong, J. Chen, H. Li, H. Ou, G. Yang, Nat. Commun. 2024, 15, 3524;
- 3dH. Zhu, J. J. Wang, Z. Xu, Y. Tan, J. Wang, Small 2024, 2404919;
- 3eQ. Hu, K. Yang, O. Peng, M. Li, L. Ma, S. Huang, Y. Du, Z.-X. Xu, Q. Wang, Z. Chen, M. Yang, K. P. Loh, J. Am. Chem. Soc. 2024, 146, 668–676;
- 3fQ. Hu, O. Peng, J. Liu, D. Chen, K. P. Loh, ACS Energy Lett. 2024, 9, 2303–2309.
- 4
- 4aA. J. Bard, J. Ketelaar, J. Electrochem. Soc. 1974, 121, 212C;
- 4bY. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 2021, 50, 6720–6733;
- 4cS. Han, H. Li, T. Li, F. Chen, R. Yang, Y. Yu, B. Zhang, Nat. Catal. 2023, 6, 402–414;
- 4dH. Jiang, G.-F. Chen, O. Savateev, J. Xue, L.-X. Ding, Z. Liang, M. Antonietti, H. Wang, Angew. Chem. Int. Ed. 2023, 62, e202218717.
- 5
- 5aZ. Song, Y. Liu, Y. Zhong, Q. Guo, J. Zeng, Z. Geng, Adv. Mater. 2022, 34, 2204306;
- 5bY. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5350–5354;
- 5cJ. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J. Am. Chem. Soc. 2022, 144, 12062–12071;
- 5dP. Li, R. Li, Y. Liu, M. Xie, Z. Jin, G. Yu, J. Am. Chem. Soc. 2023, 145, 6471–6479;
- 5eS. Zhang, J. Wu, M. Zheng, X. Jin, Z. Shen, Z. Li, Y. Wang, Q. Wang, X. Wang, H. Wei, Nat. Commun. 2023, 14, 3634;
- 5fD. Wang, X. Zhu, X. Tu, X. Zhang, C. Chen, X. Wei, Y. Li, S. Wang, Adv. Mater. 2023, 2304646.
- 6
- 6aM. A. Spencer, N. P. Holzapfel, K.-E. You, G. Mpourmpakis, V. Augustyn, Chem. Sci. 2024, 15, 5385–5402;
- 6bE. Billeter, A. Sterzi, O. Sambalova, R. Wick-Joliat, C. Grazioli, M. Coreno, Y. Cheng, A. J. Ramirez-Cuesta, A. Borgschulte, Phys. Rev. B 2021, 103, 205304;
- 6cZ. Bian, J. Zhao, H. Cao, Y. Dong, Z. Luo, ACS Appl. Mater. Inter. 2021, 13, 13419–13424.
- 7M. Zeng, Y. Li, J. Mater. Chem. A 2015, 3, 14942–14962.
- 8Q. Tan, L. Li, Y. Li, Z. Jiang, Y. Ma, Y. Qu, J. Li, Angew. Chem. Int. Ed. 2024, 63, e202400483.
- 9J. Chen, C. Chen, M. Qin, B. Li, B. Lin, Q. Mao, H. Yang, B. Liu, Y. Wang, Nat. Commun. 2022, 13, 5382.
- 10Y. Feng, X. Wang, J. Ma, N. Wang, Q. Liu, K. Suenaga, W. Chen, J. Zhang, Y. Zhou, J. Wang, Adv. Energy Mater. 2024, 14, 2401501.
- 11
- 11aJ.-Y. Fang, Q.-Z. Zheng, Y.-Y. Lou, K.-M. Zhao, S.-N. Hu, G. Li, O. Akdim, X.-Y. Huang, S.-G. Sun, Nat. Commun. 2022, 13, 7899;
- 11bJ. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J.-F. Li, Z.-Q. Tian, W. Liu, A. Wang, T. Zhang, J. Am. Chem. Soc. 2022, 144, 12062–12071;
- 11cW. Gao, K. Xie, J. Xie, X. Wang, H. Zhang, S. Chen, H. Wang, Z. Li, C. Li, Adv. Mater. 2023, 35, 2202952;
- 11dH. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Rüscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Z. Liu, W. Wang, B. R. Cuenya, J. Luo, Angew. Chem. Int. Ed. 2022, 61, e202202556;
- 11eY. Wang, W. Zhang, W. Wen, X. Yu, Y. Du, K. Ni, Y. Zhu, M. Zhu, Adv. Funct. Mater. 2023, 33, 2302651.
- 12H. Zhu, Q. Yang, D. Liu, Y. Du, S. Yan, M. Gu, Z. Zou, J. Am. Chem. Soc. 2021, 143, 9236–9243.
- 13J. L. Paul, J. C. Lassègues, J. Solid State Chem. 1993, 106, 357–371.
- 14P. Roy Chowdhury, H. Medhi, K. G. Bhattacharyya, C. Mustansar Hussain, Coordin. Chem. Rev. 2023, 483, 215083.
- 15S. Gong, Y. Meng, Z. Jin, H.-Y. Hsu, M. Du, F. Liu, ACS Catal. 2024, 14, 14399–14435.
- 16
- 16aJ. Mahmood, M. A. R. Anjum, S.-H. Shin, I. Ahmad, H.-J. Noh, S.-J. Kim, H. Y. Jeong, J. S. Lee, J.-B. Baek, Adv. Mater. 2018, 30, 1805606;
- 16bJ. Choi, Y. J. Lee, D. Park, H. Jeong, S. Shin, H. Yun, J. Lim, J. Han, E. J. Kim, S. S. Jeon, Y. Jung, H. Lee, B. J. Kim, Energy Environ. Sci. 2020, 13, 4921–4929.
- 17N. Pfriem, Y. Liu, F. Zahn, H. Shi, G. L. Haller, J. A. Lercher, J. Am. Chem. Soc. 2021, 143, 20133–20143.
- 18
- 18aR. Šimpraga, G. Tremiliosi-Filho, S. Y. Qian, B. E. Conway, J. Electroanal. Chem. 1997, 424, 141–151;
- 18bN. V. Krstajić, B. N. Grgur, N. S. Mladenović, M. V. Vojnović, M. M. Jaks̆ić, Electrochim. Acta 1997, 42, 323–330.
- 19
- 19aL. Bai, D. A. Harrington, B. E. Conway, Electrochim. Acta 1987, 32, 1713–1731;
- 19bJ. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia, S. Zhang, C.-R. Chang, Y. Ma, Y. Qu, Energy Environ. Sci. 2019, 12, 2298–2304.
- 20
- 20aJ. Park, S. Lee, H.-E. Kim, A. Cho, S. Kim, Y. Ye, J. W. Han, H. Lee, J. H. Jang, J. Lee, Angew. Chem. Int. Ed. 2019, 58, 16038–16042;
- 20bD. Zhan, J. Velmurugan, M. V. Mirkin, J. Am. Chem. Soc. 2009, 131, 14756–14760;
- 20cS. Mukherjee, B. Ramalingam, S. Gangopadhyay, J. Mater. Chem. A 2014, 2, 3954–3960;
- 20dL. Zhang, Y. Guo, A. Iqbal, B. Li, D. Gong, W. Liu, K. Iqbal, W. Liu, W. Qin, Int. J. Hydrogen Energy 2018, 43, 1251–1260.
- 21Y. Li, L. Li, S. Xu, K. Cui, T. Wang, Z. Jiang, J. Li, Angew. Chem. Int. Ed. 2024, 63, e202407810.
- 22
- 22aS. Hunsche, A. Gröne, G. Greten, S. Kapphan, R. Pankrath, J. Seglins, Phys. Status Solidi A 1995, 148, 629–634;
- 22bQ. Wu, H. Li, G. Yang, Y. Cao, H. Wang, F. Peng, H. Yu, J. Catal. 2023, 425, 40–49.
- 23H. Jeffrey, D. Marco, X. Bingjun, J. Phys. Chem. C 2016, 120, 17334–17341.
- 24K. Fan, W. Xie, J. Li, Y. Sun, P. Xu, Y. Tang, Z. Li, M. Shao, Nat. Commun. 2022, 13, 7958.
- 25J. N. Kondo, S. Ge, T. Suzuki, R. Osuga, T. Matsumoto, T. Yokoi, Y. Shimizu, A. Fukazawa, N. Shida, M. Atobe, J. Phys. Chem. C 2022, 126, 19376–19385.
- 26Z. Wang, B. Zhang, S. Yang, X. Yang, F. Meng, L. Zhai, Z. Li, S. Zhao, G. Zhang, Y. Qin, J. Catal. 2022, 414, 385–393.
- 27B. Widom, Adv. Chem. Phys. 1963, 5, 353.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.