Harnessing the Synergistic Interplay between Atomic-Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance
Shenghua Ye
State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, 100871 China
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Shenzhen Eigen-Equation Graphene Technology Co. Ltd., Shenzhen, 518000 PR China
These authors contributed equally to this work.
Search for more papers by this authorWenda Chen
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZhijun Ou
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorQinghao Zhang
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorJie Zhang
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYongliang Li
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorXiangzhong Ren
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorXiaoping Ouyang
School of Materials Science and Engineering, Xiangtan University, Xiangtan, P. R. China
Search for more papers by this authorCorresponding Author
Lirong Zheng
Institute of High Energy Physics Chinese Academy of Sciences, Beijing, 100049 PR China
Search for more papers by this authorCorresponding Author
Xueqing Yan
State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, 100871 China
Search for more papers by this authorJianhong Liu
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Shenzhen Eigen-Equation Graphene Technology Co. Ltd., Shenzhen, 518000 PR China
Search for more papers by this authorCorresponding Author
Prof. Qianling Zhang
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorShenghua Ye
State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, 100871 China
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Shenzhen Eigen-Equation Graphene Technology Co. Ltd., Shenzhen, 518000 PR China
These authors contributed equally to this work.
Search for more papers by this authorWenda Chen
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZhijun Ou
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorQinghao Zhang
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorJie Zhang
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYongliang Li
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorXiangzhong Ren
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorXiaoping Ouyang
School of Materials Science and Engineering, Xiangtan University, Xiangtan, P. R. China
Search for more papers by this authorCorresponding Author
Lirong Zheng
Institute of High Energy Physics Chinese Academy of Sciences, Beijing, 100049 PR China
Search for more papers by this authorCorresponding Author
Xueqing Yan
State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, 100871 China
Search for more papers by this authorJianhong Liu
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Shenzhen Eigen-Equation Graphene Technology Co. Ltd., Shenzhen, 518000 PR China
Search for more papers by this authorCorresponding Author
Prof. Qianling Zhang
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorAbstract
Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt-based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni-doped vacancy-rich Pt nanoparticles anchored on nitrogen-doped graphene (Vac-NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic-scale vacancies in the Pt NPs induces long-range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic-scale vacancies mainly contributed the tolerance performances towards CO and CH3OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic-scale vacancies and ligand effect, as-prepared Vac-NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal-based nanomaterials.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202414989-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y. Qin, J.-Y. Ma, F. Lin, D. Su, G. Lu, S. Guo, Nature 2019, 574, 81–85.
- 2K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361–369.
- 3T. Zhao, G. Wang, M. Gong, D. Xiao, Y. Chen, T. Shen, Y. Lu, J. Zhang, H. Xin, Q. Li, D. Wang, ACS Catal. 2020, 10, 15207–15216.
- 4R. Haider, Y. Wen, Z.-F. Ma, D. P. Wilkinson, L. Zhang, X. Yuan, S. Song, J. Zhang, Chem. Soc. Rev. 2021, 50, 1138–1187.
- 5M. K. Debe, Nature 2012 486, 43–51.
- 6L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D.-J. Liu, Science 2018, 362, 1276–1281.
- 7Y. Sun, X. Zhang, M. Luo, X. Chen, L. Wang, Y. Li, M. Li, Y. Qin, C. Li, N. Xu, G. Lu, P. Gao, S. Guo, Adv. Mater. 2018, 30, 1802136.
- 8M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li, Y. Li, C. Li, Y. Yang, L. Wang, P. Gao, G. Lu, S. Guo, Adv. Mater. 2018, 30, 1705515.
- 9Y. Zhou, Z. Xie, J. Jiang, J. Wang, X. Song, Q. He, W. Ding, Z. Wei, Nat. Catal. 2020, 3, 454–462.
- 10H. Cheng, J. Xia, M. Wang, C. Wang, R. Gui, X. Cao, T. Zhou, X. Zheng, W. Chu, H. Wu, Y. Xie, C. Wu, J. Am. Chem. Soc. 2022, 144, 22018–22025.
- 11S. Ponnada, M. S. Kiai, D. B. Gorle, A. Nowduri, R. K. Sharma, Energy Fuels 2021, 35, 15265–15284.
- 12X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Energy Environ. Sci. 2011, 4, 2736–2753.
- 13F. Lin, M. Li, L. Zeng, M. Luo, S. Guo, Chem. Rev. 2023, 123, 12507–12593.
- 14X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. Lou, B. Y. Xia, Science 2019, 366, 850–856.
- 15M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard, Y. Huang, X. Duan, Science 2016, 354, 6318.
- 16R. F. Service, Science 2007, 315, 172.
- 17F. Kong, Z. Ren, M. Norouzi Banis, L. Du, X. Zhou, G. Chen, L. Zhang, J. Li, S. Wang, M. Li, K. Doyle-Davis, Y. Ma, R. Li, A. Young, L. Yang, M. Markiewicz, Y. Tong, G. Yin, C. Du, J. Luo, X. Sun, ACS Catal. 2020, 10, 4205–4214.
- 18X. Zhao, S. Takao, K. Higashi, T. Kaneko, G. Samjeskè, O. Sekizawa, T. Sakata, Y. Yoshida, T. Uruga, Y. Iwasawa, ACS Catal. 2017, 7, 4642–4654.
- 19K. Wang, Y. Wang, S. Geng, Y. Wang, S. Song, Adv. Funct. Mater. 2022, 32, 2113399.
- 20H. Jin, Z. Xu, Z.-Y. Hu, Z. Yin, Z. Wang, Z. Deng, P. Wei, S. Feng, S. Dong, J. Liu, S. Luo, Z. Qiu, L. Zhou, L. Mai, B.-L. Su, D. Zhao, Y. Liu, Nat. Commun. 2023, 14, 1518.
- 21W. Guo, X. Gao, M. Zhu, C. Xu, X. Zhu, X. Zhao, R. Sun, Z. Xue, J. Song, L. Tian, J. Xu, W. Chen, Y. Lin, Y. Li, H. Zhou, Y. Wu, Energy Environ. Sci. 2023, 16, 148–156.
- 22Q. Feng, X. Wang, M. Klingenhof, M. Heggen, P. Strasser, Angew. Chem. Int. Ed. 2022, 61, e202206108.
- 23B. Hammer, J. K. Nørskov, Nature 1995, 376, 238–240.
- 24T. Adit Maark, A. A. Peterson, J. Phys. Chem. C 2014, 118, 4275–4281.
- 25J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, Phys. Rev. Lett. 2004, 93, 156801.
- 26T. Xia, K. Zhao, Y. Zhu, X. Bai, H. Gao, Z. Wang, Y. Gong, M. Feng, S. Li, Q. Zheng, S. Wang, R. Wang, H. Guo, Adv. Mater. 2023, 35, 2206508.
- 27J. Yang, R. Hübner, J. Zhang, H. Wan, Y. Zheng, H. Wang, H. Qi, L. He, Y. Li, A. A. Dubale, Y. Sun, Y. Liu, D. Peng, Y. Meng, Z. Zheng, J. Rossmeisl, W. Liu, Angew. Chem. Int. Ed. 2021, 60, 9590–9597.
- 28P. Yang, X. Yuan, H. Hu, Y. Liu, H. Zheng, D. Yang, L. Chen, M. Cao, Y. Xu, Y. Min, Y. Li, Q. Zhang, Adv. Funct. Mater. 2018, 28, 1704774.
- 29L. Li, W. Gao, Z. Wan, X. Wan, J. Ye, J. Gao, D. Wen, Small 2024, DOI: 10.1002/smll.202400158.
- 30D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 2017, 29, 1606459.
- 31Q. Wang, Y. Lei, D. Wang, Y. Li, Energy Environ. Sci. 2019, 12, 1730–1750.
- 32Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu, O. Zhuo, X. Wang, Q. Wu, J. Ma, Z. Hu, ACS Catal. 2015, 5, 6707–6712.
- 33Z. Xiao, Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen, S. Wang, J. Am. Chem. 2020, 142, 12087–12095.
- 34Z. Li, Y. Zhou, M. Xie, H. Cheng, T. Wang, J. Chen, Y. Lu, Z. Tian, Y. Lai, G. Yu, Angew. Chem. Int. Ed. 2023, 62, e202217815.
- 35C. Kim, S. O. Park, S. K. Kwak, Z. Xia, G. Kim, L. Dai, Nat. Commun. 2023, 14, 5822.
- 36H. Huang, A. Huang, D. Liu, W. Han, C. H. Kuo, H. Y. Chen, L. Li, H. Pan, S. Peng, Adv. Mater. 2023, 35, 2303109.
- 37W. K. Han, J. X. Wei, K. Xiao, T. Ouyang, X. Peng, S. Zhao, Z. Q. Liu, Angew. Chem. Int. Ed. 2022, 61, e202206050.
- 38L. Wang, L. Zhang, W. Ma, H. Wan, X. Zhang, X. Zhang, S. Jiang, J. Y. Zheng, Z. Zhou, Adv. Funct. Mater. 2022, 32, 2203342.
- 39D. Zhang, Y. Li, P. Wang, J. Qu, S. Zhan, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202303807.
- 40Z. X. Sun, K. Sun, M. L. Gao, Ö. Metin, H. L. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202206108.
- 41C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, J. Am. Chem. 2017, 139, 8078–8081.
- 42Z. Li, D. He, X. Yan, S. Dai, S. Younan, Z. Ke, X. Pan, X. Xiao, H. Wu, J. Gu, Angew. Chem. Int. Ed. 2020, 59, 18572–18577.
- 43J. Ying, J. Li, G. Jiang, Z. P. Cano, Z. Ma, C. Zhong, D. Su, Z. Chen, Appl. Catal. B-Environ. 2018, 225, 496–503.
- 44Y. Lv, X. Li, Int. J. Hydrogen Energy 2020, 45, 12766–12776.
- 45Z. Chen, W. Chen, L. Zheng, T. Huang, J. Hu, Y. Lei, Q. Yuan, X. Ren, Y. Li, L. Zhang, S. Huang, S. Ye, Q. Zhang, X. Ouyang, X. Sun, J. Liu, Sci. China Chem. 2022, 65, 521–531.
- 46S. Ye, F. Luo, T. Xu, P. Zhang, H. Shi, S. Qin, J. Wu, C. He, X. Ouyang, Q. Zhang, J. Liu, X. Sun, Nano Energy 2020, 68, 104301.
- 47H. Ze, X. Chen, X.-T. Wang, Y.-H. Wang, Q.-Q. Chen, J.-S. Lin, Y.-J. Zhang, X.-G. Zhang, Z.-Q. Tian, J.-F. Li, J. Am. Chem. Soc. 2021, 143, 1318–1322.
- 48Y. Yan, J. Lin, K. Huang, X. Zheng, L. Qiao, S. Liu, J. Cao, S. C. Jun, Y. Yamauchi, J. Qi, J. Am. Chem. Soc. 2023, 145, 24218–24229.
- 49M. Luo, M. T. M. Koper, Nat. Catal. 2022, 5, 615–623.
- 50J. Liu, J. Bak, J. Roh, K.-S. Lee, A. Cho, J. W. Han, E. Cho, ACS Catal. 2020, 11, 466–475.
- 51J. Li, M. N. Banis, Z. Ren, K. R. Adair, K. Doyle-Davis, D. M. Meira, Y. Z. Finfrock, L. Zhang, F. Kong, T. K. Sham, R. Li, J. Luo, X. Sun, Small 2021, 17, 2007245.
- 52L. Zhang, J. M. T. A. Fischer, Y. Jia, X. Yan, W. Xu, X. Wang, J. Chen, D. Yang, H. Liu, L. Zhuang, M. Hankel, D. J. Searles, K. Huang, S. Feng, C. L. Brown, X. Yao, J. Am. Chem. Soc. 2018, 140, 10757–10763.
- 53S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, Angew. Chem. Int. Ed. 2015, 55, 2058–2062.
- 54S. Yang, Y. J. Tak, J. Kim, A. Soon, H. Lee, ACS Catal. 2017, 7, 1301–1307.
- 55C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H.-T. Kim, K. J. J. Mayrhofer, H. Kim, M. Choi, Nat. Commun. 2016, 7, 10922.
- 56R. Chattot, P. Bordet, I. Martens, J. Drnec, L. Dubau, F. Maillard, ACS Catal. 2020, 10, 9046–9056.
- 57R. Chattot, I. Martens, M. Scohy, J. Herranz, J. Drnec, F. Maillard, L. Dubau, ACS Energy Lett. 2019, 5, 162–169.
- 58D. Wu, K. Kusada, Y. Nanba, M. Koyama, T. Yamamoto, T. Toriyama, S. Matsumura, O. Seo, I. Gueye, J. Kim, L. S. Rosantha Kumara, O. Sakata, S. Kawaguchi, Y. Kubota, H. Kitagawa, J. Am. Chem. Soc. 2022, 144, 3365–3369.
- 59C. Lim, A. R. Fairhurst, B. J. Ransom, D. Haering, V. R. Stamenkovic, ACS Catal. 2023, 13, 14874–14893.
- 60T. Bligaard, J. K. Nørskov, Electrochim. Acta 2007, 52, 5512–5516.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.