γ-Ray Driven Aqueous-Phase Methane Conversions into Complex Molecules up to Glycine
Fei Fang
Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally.
Search for more papers by this authorDr. Xiao Sun
Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally.
Search for more papers by this authorProf. Yuanxu Liu
School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 P. R. China
Search for more papers by this authorDr. Zhiwen Jiang
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorProf. Mozhen Wang
Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorProf. Xuewu Ge
Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Weixin Huang
Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorFei Fang
Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally.
Search for more papers by this authorDr. Xiao Sun
Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
These authors contributed equally.
Search for more papers by this authorProf. Yuanxu Liu
School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 P. R. China
Search for more papers by this authorDr. Zhiwen Jiang
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorProf. Mozhen Wang
Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorProf. Xuewu Ge
Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Weixin Huang
Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorAbstract
Fundamental understanding of initial evolutions of molecules in the universe is of great interest and importance. CH4 is one of the abundant simple molecules in the universe. Herein we report γ-ray, high-energy photons commonly existing in cosmic rays and unstable isotope decay, as an external energy to efficiently drives aqueous-phase CH4 conversions to various products with the presence of oxygen at room temperature. Glycine also forms with an additional introduction of ammonia. Both CH4 conversions and product distributions are modified by solid granules, and a CH3COOH selectivity as high as 82 % is obtained when SiO2 is added. Our results point to γ-ray driven aqueous-phase CH4 conversions as a likely formation network of initial complex organic compounds in the universe and offer an alternative strategy for efficiently utilizing CH4 as the carbon source to produce value-added products at mild conditions, a long-standing challenging task in heterogeneous catalysis.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202413296-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. C. A. Boogert, P. A. Gerakines, D. C. B. Whittet, Annu. Rev. Astron. Astrophys. 2015, 53, 541–581;
- 1bT. Hama, N. Watanabe, Chem. Rev. 2013, 113, 8783–8839;
- 1cF. J. Ciesla, S. A. Sandford, Science 2012, 336, 452–454;
- 1dK. I. Öberg, Chem. Rev. 2016, 116, 9631–9663;
- 1eM. Agúndez, V. Wakelam, Chem. Rev. 2013, 113, 8710–8737;
- 1fB. Rossi, K. Greisen, Rev. Mod. Phys. 1941, 13, 240–309.
- 2J. H. Lacy, J. S. Carr, N. J. Evans II, F. Baas, J. M. Achtermann, J. F. Arens, Astron. Astrophys. 1991, 376, 556–560.
- 3
- 3aM. J. Abplanalp, B. M. Jones, R. I. Kaiser, Phys. Chem. Chem. Phys. 2018, 20, 5435–5468;
- 3bB. M. Jones, R. I. Kaiser, J. Phys. Chem. Lett. 2013, 4, 1965–1971;
- 3cA. Wada, N, Mochizuki, K. Hiraoka, Astrophys. J. 2006, 644, 300–306;
- 3dC. F. Mejía, A. L. F. de Barros, H. Rothard, P. Boduch, E. F. da Silveira, Astrophys. J. 2020, 894, 132;
- 3eP. F. Goldsmith, G. J. Melnick, E. A. Bergin, J. E. Howe, R. L. Snell, D. A. Neufeld, M. Harwit, M. L. N. Ashby, B. M. Patten, S. C. Kleinere, Astrophys. J. 2000, 539, L123–L127;
- 3fS. Esmaili, A. D. Bass, P. Cloutier, L. Sanche, M. A. Huels, J. Chem. Phys. 2017, 147, 224704;
- 3gA. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton, W. J. Welch, Phys. Rev. Lett. 1968, 21, 1701–1705;
- 3hS. Esmaili, A. D. Bass, P. Cloutier, L. Sanche, M. A. Huels, J. Chem. Phys. 2018, 148, 164702;
- 3iK. Kobayashi, T. Kasamatsu, T. Kaneko, J. Koike, T. Oshima, T. Saito, T. Yamamoto, H. Yanagawa, Adv. Space Res. 1995, 16, 21–26;
- 3jM. Nuevo, G. Auger, D. Blanot, L. D'Hendecourt, Origins Life Evol. Biospheres 2008, 38, 37.
- 4
- 4aD. Kossakowski, et al. Astron. Astrophys. 2023, 670, A84;
- 4bH. Wanke, Philos. Trans. R. Soc. London Ser. A 1981, 303, 287–302;
- 4cJ. P. Ferris, C. T. Chen, J. Am. Chem. Soc. 1975, 97, 2963–2967;
- 4dJ. P. Ferris, C. T. Chen, Nature 1975, 258, 587–588.
- 5F. Fang, X. Sun, Y. Liu, W. Huang, J. Am. Chem. Soc. 2024, 146, 8492–8499.
- 6
- 6aC. Willis, A. W. Boyd, Int. J. Radiat. Phys. Chem. 1976, 8, 71–111;
- 6bG. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J. Phys. Chem. 1988, 17, 513–886.
- 7B. G. Ershov, A. V. Gordeev, Radiat. Phys. Chem. 2008, 77, 928–935.
- 8P. Li, J. Li, X, Feng, J. Li, Y. Hao, J. Zhang, H. Wang, A. Yin, J. Zhou, X. Ma, B. Wang, Nat. Commun. 2019, 10, 2177.
- 9
- 9aB. S. Gordon, E. J. Hart, M. J. Rabani, J. K. Thomas, Discuss. Faraday Soc. 1963, 36, 193–205;
10.1039/df9633600193 Google Scholar
- 9bP. Riesz, J. Phys. Chem. 1965, 65, 1366–1373.
- 10J. P. Michaut, J. Roncin, Chem. Phys. Lett. 1975, 36, 599–605.
- 11H. H. Richmond, G. S. Myers, G. F. Wright, J. Am. Chem. Soc. 1948, 70, 3659–3644.
- 12Y.-J. Kuan, S. B. Charnley, H. C. Huang, W.-L. Tseng, Z. Kisiel, Astronphys. J. 2016, 593, 848–867.
- 13C. R. Maxwell, D. C. Peterson, N. E. Sharpless, Radiat. Res. 1954, 1, 530–545.
- 14P. F. Goldsmith, et al. Astrophys. J. 2000, 539, L123–L127.
- 15
- 15aA. P. C. Mann, D. A. Williams, Nature 1980, 283, 721–725;
- 15bE. Herbst, E. F. van Dishoeck, Annu. Rev. Astron. Astrophys. 2009, 47, 427–480.
- 16W. H. Cropper, Science 1962, 137, 955–961.
- 17
- 17aB. T. Draine, Annu. Rev. Astron. Astrophys. 2003, 41, 241–289;
- 17bP. J. Sarre, Mon. Not. R. Astron. Soc. 2019, 490, L17–L20.
- 18
- 18aD. N. Friedel, L. E. Snyder, Astrophys. J. 2008, 672, 962–973;
- 18bS.-Y. Liu, J. M. Girart, A. Remijan, L. E. Snyder, Astrophys. J. 2002, 576, 255–263.
- 19E. Herbst, K. Giles, D. Smith, Astrophys. J. 1990, 358, 468–472.
- 20T.-C. Peng, et al., Astron. Astrophys. 2013, 554, A78.
- 21M. Spotheim-Maurizot, M. Mostafavi, T. Douki, J. Belloni, Radiation chemistry from basics to applications in material and life sciences, EDD Sciences France, Paris, 2008.
- 22
- 22aE. McFarland, Science 2012, 338, 340–342;
- 22bP. Schwach, X. Pan, X. Bao, Chem. Rev. 2017, 117, 8497–8520;
- 22cN. J. Gunsalus, et al., Chem. Rev. 2017, 117, 8521–573;
- 22dX. Meng, et al., Chem 2019, 5, 2296–2325;
- 22eX. Y. Li, C. Wang, J. W. Tang, Nat. Rev. Mater. 2022, 7, 617–632.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.