Interface Synergy of Exposed Oxygen Vacancy and Pd Lewis Acid Sites Enabling Superior Cooperative Photoredox Synthesis
Zhi-Sang Huang
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116 Fuzhou, China
Search for more papers by this authorYin-Feng Wang
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116 Fuzhou, China
Search for more papers by this authorDr. Ming-Yu Qi
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731 Chengdu, China
Search for more papers by this authorDr. Marco Conte
Department of Chemistry, University of Sheffield, S3 7HF Sheffield, UK
Search for more papers by this authorProf. Dr. Zi-Rong Tang
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116 Fuzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yi-Jun Xu
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116 Fuzhou, China
Search for more papers by this authorZhi-Sang Huang
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116 Fuzhou, China
Search for more papers by this authorYin-Feng Wang
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116 Fuzhou, China
Search for more papers by this authorDr. Ming-Yu Qi
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731 Chengdu, China
Search for more papers by this authorDr. Marco Conte
Department of Chemistry, University of Sheffield, S3 7HF Sheffield, UK
Search for more papers by this authorProf. Dr. Zi-Rong Tang
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116 Fuzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yi-Jun Xu
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116 Fuzhou, China
Search for more papers by this authorAbstract
Photo-driven cross-coupling of o-arylenediamines and alcohols has emerged as an alternative for the synthesis of bio-active benzimidazoles. However, tackling the key problem related to efficient adsorption and activation of both coupling partners over photocatalysts towards activity enhancement remains a challenge. Here, we demonstrate an efficient interface synergy strategy by coupling exposed oxygen vacancies (VO) and Pd Lewis acid sites for benzimidazole and hydrogen (H2) coproduction over Pd-loaded TiO2 nanospheres with the highest photoredox activity compared to previous works so far. The results show that the introduction of VO optimizes the energy band structure and supplies coordinatively unsaturated sites for adsorbing and activating ethanol molecules, affording acetaldehyde active intermediates. Pd acts as a Lewis acid site, enhancing the adsorption of alkaline amine molecules via Lewis acid-base pair interactions and driving the condensation process. Furthermore, VO and Pd synergistically promote interfacial charge transfer and separation. This work offers new insightful guidance for the rational design of semiconductor-based photocatalysts with interface synergy at the molecular level towards the high-performance coproduction of renewable fuels and value-added feedstocks.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202412707-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Noël, S. Cadet, E. Gras, C. Hureau, Chem. Soc. Rev. 2013, 42, 7747–7762.
- 2Z.-L. Qi, Y. Yang, T. Miao, L.-F. Li, X.-L. Fu, ChemistrySelect 2021, 6, 12628–12643.
- 3
- 3aM.-Y. Qi, M. Conte, M. Anpo, Z.-R. Tang, Y.-J. Xu, Chem. Rev. 2021, 121, 13051–13085;
- 3bJ. C. Colmenares, Curr. Opin. Green Sustain. Chem. 2019, 15, 38–46.
- 4
- 4aY.-F. Wang, M.-Y. Qi, M. Conte, Z.-R. Tang, Y.-J. Xu, Angew. Chem. Int. Ed. 2023, 62, e202304306;
- 4bY.-H. Qin, M.-M. Hao, C. Xu, Z.-H. Li, Green Chem. 2021, 23, 4161–4169;
- 4cY.-H. Qin, M.-M. Hao, Z.-X. Ding, Z.-H. Li, J. Catal. 2022, 410, 156–163;
- 4dY. Shiraishi, Y. Sugano, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2010, 49, 1656–1660;
- 4eZ.-J. Li, Z.-C. Ye, L.-M. Chen, J. Cui, J.-Z. Chen, ACS Appl. Mater. 2020, 3, 10720–10731.
- 5C.-W. Yang, X.-J. Yu, P.-N. Plessw, S. Heissler, P. G. Weidler, A. Nefedov, F. Studt, Y.-M. Wang, C. Wöll, Angew. Chem. Int. Ed. 2017, 56, 14301–14305.
- 6G.-L. Shao, J. Xu, S.-S. Gao, Z. Zhang, S. Liu, X. Zhang, Z. Zhou, Carbon Energy 2024, 6, e417.
- 7Y.-H. Li, Y.-F. Wang, J.-Y. Li, M.-Y. Qi, M. Conte, Z.-R. Tang, Y.-J. Xu, ACS Catal. 2023, 14, 657–669.
- 8C.-L. Tan, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Appl. Catal. B 2021, 298, 120541.
- 9
- 9aL. Wei, Y.-X. Liu, S.-P. Cui, C. Wang, H.-C. Hsi, E.-R. Duan, Y. Peng, H.-X. Dai, G.-S. Guo, J.-G. Deng, Adv. Funct. Mater. 2023, 33, 2306129;
- 9bL.-C. Liu, A. Corma, Chem. Rev. 2018, 118, 4981–5079;
- 9cZ.-Q. Hou, L.-Y. Dai, J.-G. Deng, G.-F. Zhao, L. Jing, Y.-S. Wang, X.-H. Yu, R.-Y. Gao, X.-R. Tian, H.-X. Dai, D.-S. Wang, Y.-X. Liu, Angew. Chem. Int. Ed. 2022, 61, e202201655;
- 9dE. W. McFarland, H. Metiu, Chem. Rev. 2013, 113, 4391–4427.
- 10
- 10aY. Huang, K. Li, J.-C. Zhou, J. Guan, F.-F. Zhu, K. Wang, M.-C. Liu, W.-S. Chen, N.-X. Li, Chem. Eng. J. 2022, 439, 135744;
- 10bM.-Y. Qi, H.-K. Wu, M. Anpo, Z.-R. Tang, Y.-J. Xu, Nano Res. 2022, 15, 9967–9975.
- 11W.-Q. Zhang, C.-F. Fu, J.-X. Low, D.-L. Duan, J. Ma, W.-B. Jiang, Y.-H. Chen, H.-J. Liu, Z.-M. Qi, R. Long, Y.-F. Yao, X.-B. Li, H. Zhang, Z. Liu, J.-L. Yang, Z.-G. Zou, Y.-J. Xiong, Nat. Commun. 2022, 13, 2806.
- 12H.-G. Peng, C. Rao, N. Zhang, X. Wang, W.-M. Liu, W.-T. Mao, L. Han, P.-F. Zhang, S. Dai, Angew. Chem. Int. Ed. 2018, 57, 8953–8957.
- 13J.-Y. Zhang, W.-D. Wang, X.-W. Chen, J.-L. Jin, X.-J. Yan, J.-M. Huang, J. Am. Chem. Soc. 2024, 146, 10432–10442.
- 14X. Sun, F. Li, Z.-M. Wang, H.-L. An, W. Xue, X.-Q. Zhao, Y.-J. Wang, Chem. Eng. J. 2023, 475, 146143.
- 15
- 15aD.-W. Zhou, H.-X. Luo, F.-Z. Zhang, J. Wu, J.-P. Yang, H.-P. Wang, Adv. Fiber Mater. 2022, 4, 1094–1107;
- 15bJ.-W. Huang, S. He, J. L. Goodsell, J. R. Mulcahy, W.-X. Guo, A. Angerhofer, W.-D. Wei, J. Am. Chem. Soc. 2020, 142, 6456–6460;
- 15cX.-J. Li, M.-Y. Qi, J.-Y. Li, C.-L. Tan, Z.-R. Tang, Y.-J. Xu, Chin. J. Catal. 2023, 51, 55–65.
- 16
- 16aM. Esmat, H. El-Hosainy, R. Tahawy, W. Jevasuwan, N. Tsunoji, N. Fukata, Y. Ide, Appl. Catal. B 2021, 285, 119755;
- 16bX. Cheng, G.-J. Dong, Y.-J. Zhang, C.-C. Feng, Y.-P. Bi, Appl. Catal. B 2020, 267, 118723.
- 17C.-S. Kim, J.-W. Shin, Y.-H. Cho, H.-D. Jang, H. S. Byun, T. O. Kim, Appl. Catal. A 2013, 455, 211–218.
- 18Z.-Y. Li, D. Wu, W.-B. Gong, J.-Y. Li, S.-K. Sang, H.-J. Liu, R. Long, Y.-J. Xiong, Chin. J. Struct. Chem. 2022, 41, 2212043–2212050.
- 19S.-S. Chen, J.-X. Yang, C.-M. Ding, R.-G. Li, S.-Q. Jin, D.-E. Wang, H.-X. Han, F.-X. Zhang, C. Li, J. Mater. Chem. A 2013, 1, 5651–5659.
- 20S. Bai, N. Zhang, C. Gao, Y.-J. Xiong, Nano Energy 2018, 53, 296–336.
- 21Y.-Z. Chen, Y.-X. Zhou, H.-W. Wang, J.-L. Lu, T. Uchida, Q. Xu, S.-H. Yu, H.-L. Jiang, ACS Catal. 2015, 5, 2062–2069.
- 22Y.-T. Dai, P.-J. Ren, Y.-R. Li, D.-D. Lv, Y.-B. Shen, Y.-W. Li, H. Niemantsverdriet, F. Besenbacher, H.-W. Xiang, W.-C. Hao, N. Lock, X.-D. Wen, J. P. Lewis, R. Su, Angew. Chem. Int. Ed. 2019, 58, 6265–6270.
- 23M.-Y. Qi, M. Conte, Z.-R. Tang, Y.-J. Xu, ACS Nano 2022, 16, 17444–17453.
- 24Y. Chen, C.-L. Tan, J.-Y. Li, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Ind. Chem. Mater. 2024, 2, 289–299.
- 25M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, ACS Catal. 2023, 13, 3971–3982.
- 26X. Chen, X. Zhang, Y.-H. Li, M.-Y. Qi, J.-Y. Li, Z.-R. Tang, Z. Zhou, Y.-J. Xu, Appl. Catal. B 2021, 281, 119516.
- 27Y.-S. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu, Catal. Today 2020, 340, 121–127.
- 28Y.-H. Li, F. Zhang, Y. Chen, J.-Y. Li, Y.-J. Xu, Green Chem. 2020, 22, 163–169.
- 29M.-Y. Qi, Y.-J. Xu, Angew. Chem. Int. Ed. 2023, 62, e202311731.
- 30Q. Liu, S. Wang, W. Mo, Y. Zheng, Y. Xu, G. Yang, S. Zhong, J. Ma, D. Liu, S. Bai, Small 2022, 18, 2104681.
- 31J. Ni, L.-W. Chen, J.-Y. Lin, S. Kawi, Nano Energy 2012, 1, 674–686.
- 32N. Zhang, X.-Y. Li, Y.-F. Liu, R. Long, M.-Q. Li, S.-M. Chen, Z.-M. Qi, C.-M. Wang, L. Song, J. Jiang, Y.-J. Xiong, Small 2017, 13, 1701354.
- 33J.-H. Zheng, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, J. Mater. Chem. A 2023, 11, 4013–4019.
- 34L. Cheng, F.-X. Wu, H.-B. Bao, F.-H. Li, G.-B. Xu, Y.-J. Zhang, W.-X. Niu, Small 2021, 17, 2104083.
- 35
- 35aY. Xu, Y.-W. Sheng, M.-Z. Wang, T.-T. Liu, H.-J. Yu, K. Deng, Z.-Q. Wang, L. Wang, H.-J. Wang, J. Mater. Chem. A 2022, 10, 16290–16296;
- 35bY.-H. Gao, K.-P. Wang, S.-K. Li, H. Zhang, F.-Z. Huang, J. Mater. Chem. A 2023, 11, 21161–21169.
- 36J.-Y. Li, C.-L. Tan, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Angew. Chem. Int. Ed. 2023, 62, e202303054.
- 37Y.-J. Liu, C.-Y. Zhang, R.-J. Wang, Y.-X. Wu, X.-Y. Zan, S.-Q. Tao, W. Huang, ACS Catal. 2024, 14, 8823–8835.
- 38
- 38aC. Fu, F. Li, J.-C. Zhang, D. Li, K. Qian, Y. Liu, J.-W. Tang, F.-T. Fan, Q. Zhang, X.-Q. Gong, W.-X. Huang, Angew. Chem. Int. Ed. 2021, 60, 6160–6169;
- 38bF. Guzman, S. S. C. Chuang, J. Am. Chem. Soc. 2010, 132, 1502–1503.
- 39M.-L. Duan, C.-Y. Hu, D.-L. Duan, R.-T. Chen, C.-M. Wang, D. Wu, T. Xia, H.-J. Liu, Y.-T. Dai, R. Long, L. Song, Y.-J. Xiong, Appl. Catal. B 2022, 307, 121211.
- 40
- 40aS.-J. Xie, Z.-B. Shen, J. Deng, P. Guo, Q.-H. Zhang, H.-K. Zhang, C. Ma, Z. Jiang, J. Cheng, D.-H. Deng, Y. Wang, Nat. Commun. 2018, 9, 1–7;
- 40bS.-F. Jia, X. Shu, H.-Y. Song, Z. An, X. Xiang, J. Zhang, Y.-R. Zhu, J. He, Ind. Eng. Chem. Res. 2021, 60, 12282–12291.
- 41X.-L. Lin, X. Fei, D.-L. Chen, Y. Qi, Q.-Z. Xu, Y.-C. Liu, Q. Zhang, S. Li, T.-J. Wang, Y.-L. Qin, X.-Q. Qiu, ACS Catal. 2022, 12, 11573–11585.
- 42H.-Q. Li, J.-F. Pang, N. R. Jaegers, L. Kovarik, M. Engelhard, A. W. Savoy, J.-Z. Hu, J.-M. Sun, Y. Wang, J. Energy Chem. 2021, 54, 7–15.
- 43S. Wei, H.-X. Zhong, H.-T. Wang, Y.-J. Song, C.-M. Jia, M. Anpo, L. Wu, Appl. Catal. B 2022, 305, 121032.
- 44Z. D. Young, S. Hanspal, R. J. Davis, ACS Catal. 2016, 6, 3193–3202.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.