Atomically Dispersed Iron-Copper Dual-Metal Sites Synergistically Boost Carbonylation of Methane
Dr. Qingpeng Cheng
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorDr. Xueli Yao
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorProf. Dr. Guanna Li
Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708WG The Netherlands
Search for more papers by this authorGuanxing Li
Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorProf. Dr. Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Kaijie Yang
Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Abdul-Hamid Emwas
Imaging and Characterization Core Lab, KAUST, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorProf. Dr. Xingang Li
State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Han
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900 Saudi Arabia
Electron Microscopy Center, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jorge Gascon
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Qingpeng Cheng
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorDr. Xueli Yao
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorProf. Dr. Guanna Li
Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708WG The Netherlands
Search for more papers by this authorGuanxing Li
Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorProf. Dr. Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Kaijie Yang
Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorDr. Abdul-Hamid Emwas
Imaging and Characterization Core Lab, KAUST, Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorProf. Dr. Xingang Li
State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Han
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900 Saudi Arabia
Electron Microscopy Center, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jorge Gascon
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorAbstract
The direct liquid-phase oxidative carbonylation of methane, utilizing abundant natural gas, offers a mild and straightforward alternative. However, most catalysts proposed for this process suffer from low acetic acid yields due to few active sites and rapid C1 oxygenate generation, impeding their industrial feasibility. Herein, we report a highly efficient 0.1Cu/Fe-HZSM-5-TF (TF denotes template-free synthesis) catalyst featuring exclusively mononuclear Fe and Cu anchored in the ZSM-5 channels. Under optimized conditions, the catalyst achieved an unprecedented acetic acid yield of 40.5 mmol gcat−1 h−1 at 50 °C, tripling the previous records of 12.0 mmol gcat−1 h−1. Comprehensive characterization, isotope-labeled experiments and density functional theory (DFT) calculations reveal that the homogeneous mononuclear Fe sites are responsible for the activation and oxidation of methane, while the neighboring Cu sites play a key role in retarding the oxidation process, promoting C−C coupling for effective acetic acid synthesis. Furthermore, the methyl-group carbon in acetic acid originates solely from methane, while its carbonyl-group carbon is derived exclusively from CO, rather than the conversion of other C1 oxygenates. The proposed bimetallic catalyst design not only overcomes the limitations of current catalysts but also generalizes the oxidative carbonylation of other alkanes, demonstrating promising advancements in sustainable chemical synthesis.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202411048-sup-0001-misc_information.pdf7.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. I. Olivos-Suarez, À. Szécsényi, E. J. Hensen, J. Ruiz-Martinez, E. A. Pidko, J. Gascon, ACS Catal. 2016, 6, 2965–2981;
- 1bH. Fujisaki, T. Ishizuka, H. Kotani, Y. Shiota, K. Yoshizawa, T. Kojima, Nature 2023, 616, 476–481;
- 1cN. F. Dummer, D. J. Willock, Q. He, M. J. Howard, R. J. Lewis, G. Qi, S. H. Taylor, J. Xu, D. Bethell, C. J. Kiely, Chem. Rev. 2022, 123, 6359–6411;
- 1dY. Tang, Y. Li, V. Fung, D.-e. Jiang, W. Huang, S. Zhang, Y. Iwasawa, T. Sakata, L. Nguyen, X. Zhang, Nat. Commun. 2018, 9, 1231.
- 2
- 2aQ. Cheng, G. Li, X. Yao, L. Zheng, J. Wang, A.-H. Emwas, P. Castaño, J. Ruiz-Martinez, Y. Han, J. Am. Chem. Soc. 2023, 145, 5888–5898;
- 2bS. J. Freakley, N. Dimitratos, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Acc. Chem. Res. 2021, 54, 2614–2623;
- 2cH. Li, M. Fei, J. L. Troiano, L. Ma, X. Yan, P. Tieu, Y. Yuan, Y. Zhang, T. Liu, X. Pan, J. Am. Chem. Soc. 2023, 145, 769–773.
- 3X. Sun, X. Chen, C. Fu, Q. Yu, X.-S. Zheng, F. Fang, Y. Liu, J. Zhu, W. Zhang, W. Huang, Nat. Commun. 2022, 13, 6677.
- 4
- 4aJ. Shan, M. Li, L. F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Nature 2017, 551, 605–608;
- 4bG. Qi, T. E. Davies, A. Nasrallah, M. A. Sainna, A. G. Howe, R. J. Lewis, M. Quesne, C. R. A. Catlow, D. J. Willock, Q. He, Nature Catalysis 2022, 5, 45–54.
- 5Z. Ren, Y. Lyu, X. Song, Y. Liu, Z. Jiang, R. Lin, Y. Ding, Adv. Mater. 2019, 31, 1904976.
- 6K. Narsimhan, V. K. Michaelis, G. Mathies, W. R. Gunther, R. G. Griffin, Y. Roman-Leshkov, J. Am. Chem. Soc. 2015, 137, 1825–1832.
- 7B. Wu, T. Lin, Z. Lu, X. Yu, M. Huang, R. Yang, C. Wang, C. Tian, J. Li, Y. Sun, Chem 2022, 8, 1658–1672.
- 8C.-W. Wang, Y. Sun, L.-J. Wang, W.-H. Feng, Y.-T. Miao, M.-M. Yu, Y.-X. Wang, X.-D. Gao, Q. Zhao, Z. Ding, Appl. Catal. B 2023, 329, 122549.
- 9A. Oda, K. Aono, N. Murata, K. Murata, M. Yasumoto, N. Tsunoji, K. Sawabe, A. Satsuma, Catalysis Science, Technology 2022, 12, 542–550.
- 10
- 10aC. Hammond, N. Dimitratos, J. A. Lopez-Sanchez, R. L. Jenkins, G. Whiting, S. A. Kondrat, M. H. ab Rahim, M. M. Forde, A. Thetford, H. Hagen, E. E. Stangland, J. M. Moulijn, S. H. Taylor, D. J. Willock, G. J. Hutchings, ACS Catal. 2013, 3, 1835–1844;
- 10bC. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely, G. J. Hutchings, Angew. Chem. Int. Ed. Engl. 2012, 51, 5129–5133.
- 11
- 11aM. Høj, M. J. Beier, J.-D. Grunwaldt, S. Dahl, Appl. Catal. B 2009, 93, 166–176;
- 11bK. Zhu, S. Liang, X. Cui, R. Huang, N. Wan, L. Hua, H. Li, H. Chen, Z. Zhao, G. Hou, M. Li, Q. Jiang, L. Yu, D. Deng, Nano Energy 2021, 82;
- 11cT. Yu, Z. Li, W. Jones, Y. Liu, Q. He, W. Song, P. Du, B. Yang, H. An, D. M. Farmer, C. Qiu, A. Wang, B. M. Weckhuysen, A. M. Beale, W. Luo, Chem. Sci. 2021, 12, 3152–3160.
- 12
- 12aQ. Zhang, J. Li, G. He, J. Li, Z. Chen, Q. Zhang, C. Wang, G. Qi, Q. Wang, P. Zhang, CCS Chem. 2024, 1–25;
- 12bT. Yu, Z. Li, W. Jones, Y. Liu, Q. He, W. Song, P. Du, B. Yang, H. An, D. M. Farmer, Chem. Sci. 2021, 12, 3152–3160.
- 13
- 13aC. Hammond, N. Dimitratos, J. A. Lopez-Sanchez, R. L. Jenkins, G. Whiting, S. A. Kondrat, M. H. Ab Rahim, M. M. Forde, A. Thetford, H. Hagen, ACS Catal. 2013, 3, 1835–1844;
- 13bK. Zhu, S. Liang, X. Cui, R. Huang, N. Wan, L. Hua, H. Li, H. Chen, Z. Zhao, G. Hou, Nano Energy 2021, 82, 105718.
- 14Y. Deng, G. t Veser, Energy Fuels 2023, 37, 13282–13295.
- 15V. L. Sushkevich, O. V. Safonova, D. Palagin, M. A. Newton, J. A. van Bokhoven, Chem. Sci. 2020, 11, 5299–5312.
- 16Z. Fang, M. Huang, B. Liu, F. Jiang, Y. Xu, X. Liu, J. Catal. 2022, 405, 1–14.
- 17
- 17aW. Zhao, Y. Shi, Y. Jiang, X. Zhang, C. Long, P. An, Y. Zhu, S. Shao, Z. Yan, G. Li, Z. Tang, Angew. Chem. Int. Ed. Engl. 2021, 60, 5811–5815;
- 17bX. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L. He, X. Chen, Q. Li, J. Xiao, D. Deng, X. Bao, Chem 2018, 4, 1902–1910.
- 18
- 18aQ. Qian, J. Zhang, M. Cui, B. Han, Nat. Commun. 2016, 7, 11481;
- 18bK. Nagahara, I. Ryu, M. Komatsu, N. Sonoda, J. Am. Chem. Soc. 1997, 119, 5465–5466.
- 19
- 19aS. Bai, F. Liu, B. Huang, F. Li, H. Lin, T. Wu, M. Sun, J. Wu, Q. Shao, Y. Xu, Nat. Commun. 2020, 11, 954;
- 19bA. Engdahl, B. Nelander, Phys. Chem. Chem. Phys. 2004, 6, 730–734.
- 20
- 20aY. Chen, H. Li, W. Zhao, W. Zhang, J. Li, W. Li, X. Zheng, W. Yan, W. Zhang, J. Zhu, Nat. Commun. 2019, 10, 1885;
- 20bY. Peng, L. Wang, Q. Luo, Y. Cao, Y. Dai, Z. Li, H. Li, X. Zheng, W. Yan, J. Yang, Chem 2018, 4, 613–62.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.