In Situ Analysis of Interfacial Morphological and Chemical Evolution in All-Solid-State Lithium-Metal Batteries
Dr. Xu-Sheng Zhang
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorDr. Jing Wan
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorDr. Zhen-Zhen Shen
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorProf. Dr. Shuang-Yan Lang
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorProf. Dr. Sen Xin
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Dr. Rui Wen
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu-Guo Guo
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Dr. Li-Jun Wan
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorDr. Xu-Sheng Zhang
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorDr. Jing Wan
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorDr. Zhen-Zhen Shen
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorProf. Dr. Shuang-Yan Lang
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorProf. Dr. Sen Xin
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Dr. Rui Wen
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu-Guo Guo
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Dr. Li-Jun Wan
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100190 People's Republic of China
Search for more papers by this authorAbstract
In situ analysis of Li plating/stripping processes and evolution of solid electrolyte interphase (SEI) are critical for optimizing all-solid-state Li metal batteries (ASSLMB). However, the buried solid-solid interfaces present a challenge for detection which preclude the employment of multiple analysis techniques. Herein, by employing complementary in situ characterizations, morphological/chemical evolution, Li plating/stripping dynamics and SEI dynamics were directly detected. As a mixed ionic-electronic conducting interface, Li|Li10GeP2S12 (LGPS) performed distinct interfacial morphological/chemical evolution and dynamics from ionic-conducting/electronic-isolating interface like Li|Li3PS4 (LPS), which were revealed by combination of in situ atomic force microscopy and in situ X-ray photoelectron spectroscopy. Though Li plating speed in LGPS was higher than LPS, speed of SSE decomposition was similar and ~85 % interfacial SSE turned into SEI during plating and remained unchanged in stripping. To leverage strengths of different SSEs, an LPS-LGPS-LPS sandwich electrolyte was developed, demonstrating enhanced ionic conductivity and improved interfacial stability with less SSE decomposition (25 %). Using in situ Kelvin probe force microscopy, Li-ion behavior at interface between different SSEs was effectively visualized, uncovering distribution of Li ions at LGPS|LPS interface under different potentials.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409435-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. M. Tarascon, M. Armand, Nature 2001, 414, 359–367;
- 1bD. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194–206;
- 1cX. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473;
- 1dW. Xu, J. L. Wang, F. Ding, X. L. Chen, E. Nasybutin, Y. H. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513–537.
- 2
- 2aZ. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv. Mater. 2018, 30, e1705702;
- 2bA. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103;
- 2cQ. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229–252;
- 2dP. Jaumaux, Q. Liu, D. Zhou, X. Xu, T. Wang, Y. Wang, F. Kang, B. Li, G. Wang, Angew. Chem. Int. Ed. 2020, 59, 9134–9142;
- 2eC. Shen, W. Feng, Y. Yu, H. Wang, Y. Cheng, C. Dong, J. Gu, A. Zheng, X. Liao, X. Xu, L. Mai, Adv. Energy Mater. 2024, 14, 2304511;
- 2fQ. Liu, D. Zhou, D. Shanmukaraj, P. Li, F. Kang, B. Li, M. Armand, G. Wang, ACS Energy Lett. 2020, 5, 1456–1464.
- 3
- 3aN. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682–686;
- 3bY. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 2016, 1, 16030;
- 3cH. J. Deiseroth, S. T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Angew. Chem. Int. Ed. 2008, 47, 755–758;
- 3dJ. Wu, S. Liu, F. Han, X. Yao, C. Wang, Adv. Mater. 2021, 33, e2000751;
- 3eY. Tanaka, K. Ueno, K. Mizuno, K. Takeuchi, T. Asano, A. Sakai, Angew. Chem. Int. Ed. 2023, 62, e202217581.
- 4
- 4aA. Sakuda, A. Hayashi, M. Tatsumisago, Sci. Rep. 2013, 3, 2261;
- 4bQ. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Adv. Mater. 2019, 31, e1901131;
- 4cY. Guo, S. Wu, Y.-B. He, F. Kang, L. Chen, H. Li, Q.-H. Yang, eScience 2022, 2, 138–163.
- 5
- 5aH. Wang, J. Zhu, Y. Su, Z. Gong, Y. Yang, Sci. China Chem. 2021, 64, 879–898;
- 5bY. Xiao, Y. Wang, S.-H. Bo, J. C. Kim, L. J. Miara, G. Ceder, Nat. Rev. Mater. 2019, 5, 105–126;
- 5cS. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma, G. Yin, J. Wang, Adv. Mater. 2021, 33, e2000721;
- 5dJ. Yu, Q. Liu, X. Hu, S. Wang, J. Wu, B. Liang, C. Han, F. Kang, B. Li, Energy Storage Mater. 2022, 46, 68–75;
- 5eC. Shen, M. Yan, X. Liao, R. Xu, H. Wang, W. Feng, W. Yang, Y. Li, C. Zhou, H. Wang, X. Xu, L. Mai, ACS Nano 2024, 18, 5068–5078; W. Q. Guo, Q. Liu, K. Wu, X. Hu, X. T. Liu, X. Cheng, C. P. Han, Y. B. He, F. Y. Kang, B. H. Li, Energy Storage Mater. 2023, 63, 103006.
- 6Y. Xiang, X. Li, Y. Cheng, X. Sun, Y. Yang, Mater. Today 2020, 36, 139–157.
- 7
- 7aL. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Frömling, H. L. Thaman, S. Berendts, R. Uecker, W. C. Carter, Y.-M. Chiang, Adv. Energy Mater. 2017, 7, 1701003;
- 7bM. Nagao, A. Hayashi, M. Tatsumisago, T. Kanetsuku, T. Tsuda, S. Kuwabata, Phys. Chem. Chem. Phys. 2013, 15, 18600–18606;
- 7cC. Wang, Y. Gong, J. Dai, L. Zhang, H. Xie, G. Pastel, B. Liu, E. Wachsman, H. Wang, L. Hu, J. Am. Chem. Soc. 2017, 139, 14257–14264;
- 7dE. Kazyak, R. Garcia-Mendez, W. S. LePage, A. Sharafi, A. L. Davis, A. J. Sanchez, K.-H. Chen, C. Haslam, J. Sakamoto, N. P. Dasgupta, Matter 2020, 2, 1025–1048;
- 7eZ. Ning, D. S. Jolly, G. Li, R. De Meyere, S. D. Pu, Y. Chen, J. Kasemchainan, J. Ihli, C. Gong, B. Liu, D. L. R. Melvin, A. Bonnin, O. Magdysyuk, P. Adamson, G. O. Hartley, C. W. Monroe, T. J. Marrow, P. G. Bruce, Nat. Mater. 2021, 20, 1121–1129;
- 7fJ. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Nat. Mater. 2019, 18, 1105–1111;
- 7gA. B. Gunnarsdóttir, C. V. Amanchukwu, S. Menkin, C. P. Grey, J. Am. Chem. Soc. 2020, 142, 20814–20827;
- 7hC. Fang, B. Lu, G. Pawar, M. Zhang, D. Cheng, S. Chen, M. Ceja, J.-M. Doux, H. Musrock, M. Cai, B. Liaw, Y. S. Meng, Nat. Energy 2021, 6, 987–994;
- 7iD. Columbus, V. Arunachalam, F. Glang, L. Avram, S. Haber, A. Zohar, M. Zaiss, M. Leskes, J. Am. Chem. Soc. 2022, 144, 9836–9844;
- 7jC. Cui, H. Yang, C. Zeng, S. Gui, J. Liang, P. Xiao, S. Wang, G. Huang, M. Hu, T. Zhai, H. Li, Sci. Adv. 2022, 8, eadd2000.
- 8
- 8aS. Wenzel, S. Randau, T. Leichtweiß, D. A. Weber, J. Sann, W. G. Zeier, J. Janek, Chem. Mater. 2016, 28, 2400–2407;
- 8bK. N. Wood, K. X. Steirer, S. E. Hafner, C. Ban, S. Santhanagopalan, S. H. Lee, G. Teeter, Nat. Commun. 2018, 9, 2490;
- 8cS. Wenzel, D. A. Weber, T. Leichtweiss, M. R. Busche, J. Sann, J. Janek, Solid State Ionics 2016, 286, 24–33;
- 8dS. Narayanan, U. Ulissi, J. S. Gibson, Y. A. Chart, R. S. Weatherup, M. Pasta, Nat. Commun. 2022, 13, 7237.
- 9
- 9aF. Mohn, L. Gross, N. Moll, G. Meyer, Nat. Nanotechnol. 2012, 7, 227–231;
- 9bA. K. Sinensky, A. M. Belcher, Nat. Nanotechnol. 2007, 2, 653–659.
- 10A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami, J. Am. Ceram. Soc. 2004, 84, 477–479.
10.1111/j.1151-2916.2001.tb00685.x Google Scholar
- 11
- 11aT. H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 2015, 184, 483–499;
- 11bY. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Joule 2022, 6, 1172–1198;
- 11cJ. P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz, E. Ivers-Tiffée, J. Power Sources 2011, 196, 5342–5348.
- 12
- 12aX. Chen, L. Li, M. Liu, T. Huang, A. Yu, J. Power Sources 2021, 496, 229867;
- 12bY. Lu, C. Z. Zhao, R. Zhang, H. Yuan, L. P. Hou, Z. H. Fu, X. Chen, J. Q. Huang, Q. Zhang, Sci. Adv. 2021, 7, eabi5520;
- 12cH. Duan, C. H. Wang, R. Z. Yu, W. H. Li, J. M. Fu, X. F. Yang, X. T. Lin, M. T. Zheng, X. A. Li, S. X. Deng, X. G. Hao, R. Y. Li, J. T. Wang, H. Huang, X. L. Sun, Adv. Energy Mater. 2023, 13, 2300815.
- 13
- 13aY. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685–23693;
- 13bL. E. Camacho-Forero, P. B. Balbuena, J. Power Sources 2018, 396, 782–790.
- 14
- 14aA. Kato, M. Yamamoto, A. Sakuda, A. Hayashi, M. Tatsumisago, ACS Appl. Energ. Mater. 2018, 1, 1002–1007;
- 14bE. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, C. Liang, J. Am. Chem. Soc. 2015, 137, 1384–1387.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.