Crystalline Porous Organic Cage Membranes Constructed Using Fortified Intermolecular Interactions for Molecular Sieving
Ziye Song
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorLinghao Liu
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorQian Sun
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJingcheng Du
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJian Guan
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorPengjia Dou
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorRunnan Zhang
Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Zhongyi Jiang
Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Jiangtao Liu
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorZiye Song
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorLinghao Liu
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorQian Sun
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJingcheng Du
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJian Guan
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorPengjia Dou
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorRunnan Zhang
Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Zhongyi Jiang
Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Jiangtao Liu
Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorAbstract
Among the various types of materials with intrinsic porosity, porous organic cages (POCs) are distinctive as discrete molecules that possess intrinsic cavities and extrinsic channels capable of facilitating molecular sieving. However, the fabrication of POC membranes remains highly challenging due to the weak noncovalent intermolecular interactions and most reported POCs are powders. In this study, we constructed crystalline free-standing porous organic cage membranes by fortifying intermolecular interactions through the induction of intramolecular hydrogen bonds, which was confirmed by single-crystal X-ray analysis. To elucidate the driving forces behind, a series of terephthaldehyde building blocks containing different substitutions were reacted with flexible triamine under different conditions via interfacial polymerization (IP). Furthermore, density functional theory (DFT) calculations suggest that intramolecular hydrogen bonding can significantly boost the intermolecular interactions. The resulting membranes exhibited fast solvent permeance and high rejection of dyes not only in water, but also in organic solvents. In addition, the membrane demonstrated excellent performance in precise molecular sieving in organic solvents. This work opens an avenue to designing and fabricating free-standing membranes composed of porous organic materials for efficient molecular sieving.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409296-sup-0001-misc_information.pdf7.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Tozawa, J. T. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Slawin, A. Steiner, A. I. Cooper, Nat. Mater. 2009, 8, 973–978.
- 2D. Hu, J. Zhang, M. Liu, Chem. Commun. 2022, 58, 11333–11346.
- 3K. T. Tan, S. Ghosh, Z. Wang, F. Wen, D. Rodríguez-San-Miguel, J. Feng, N. Huang, W. Wang, F. Zamora, X. Feng, A. Thomas, D. Jiang, Nat. Rev. Methods Primers 2023, 3, 1.
- 4Q. Guan, L.-L. Zhou, Y.-B. Dong, Chem. Soc. Rev. 2022, 51(15), 6307–6416.
- 5Q. Zhu, L. Wei, C. Zhao, H. Qu, B. Liu, T. Fellowes, S. Yang, A. Longcake, M. J. Hall, M. R. Probert, Y. Zhao, A. I. Cooper, M. A. Little, J. Am. Chem. Soc. 2023, 145, 23352–23360.
- 6T. Chen, Y. Li, Y. Wei, Y. Zhang, J. Zhu, B. Van der Bruggen, Sep. Purif. Technol. 2024, 330, 125440.
- 7J. T. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367–371.
- 8N. Giri, M. G. Del Popolo, G. Melaugh, R. L. Greenaway, K. Ratzke, T. Koschine, L. Pison, M. F. Gomes, A. I. Cooper, S. L. James, Nature 2015, 527, 216–220.
- 9S. Jiang, J. T. Jones, T. Hasell, C. E. Blythe, D. J. Adams, A. Trewin, A. I. Cooper, Nat. Commun. 2011, 2, 207.
- 10T. Hasell, S. Y. Chong, K. E. Jelfs, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 588–598.
- 11X. Li, W. Lin, V. Sharma, R. Gorecki, M. Ghosh, B. A. Moosa, S. Aristizabal, S. Hong, N. M. Khashab, S. P. Nunes, Nat. Commun. 2023, 14, 3112.
- 12Y. Wang, Y. Yang, Z. Zha, J. Wang, Z. Wang, S. Zhao, J. Membr. Sci. 2022, 659, 120782.
- 13Z. Jiang, Y. Wang, M. Sheng, Z. Zha, J. Wang, Z. Wang, S. Zhao, J. Mater. Chem. A 2023, 11, 6831–6841.
- 14A. Zhao, M. Zhang, Y. Bao, L. Zhao, G. Liu, Y. Jiang, P. Zhang, X. Cao, J. Membr. Sci. 2022, 664, 121081.
- 15M. Liu, L. Zhang, M. A. Little, V. Kapil, M. Ceriotti, S. Yang, L. Ding, D. L. Holden, R. Balderas-Xicohténcatl, D. He, R. Clowes, S. Y. Chong, G. Schütz, L. Chen, M. Hirscher, A. I. Cooper, Science 2019, 366, 613–620.
- 16K. Su, W. Wang, S. Du, C. Ji, D. Yuan, Nat. Commun. 2021, 12, 3703.
- 17Z. Wang, N. Sikdar, S. Q. Wang, X. Li, M. Yu, X. H. Bu, Z. Chang, X. Zou, Y. Chen, P. Cheng, K. Yu, M. J. Zaworotko, Z. Zhang, J. Am. Chem. Soc. 2019, 141, 9408–9414.
- 18L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. M. Thomas, J. A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K. Thallapally, A. I. Cooper, Nat. Mater. 2014, 13, 954–960.
- 19A. He, Z. Jiang, Y. Wu, H. Hussain, J. Rawle, M. E. Briggs, M. A. Little, A. G. Livingston, A. I. Cooper, Nat. Mater. 2022, 21, 463–470.
- 20T. Xu, B. Wu, L. Hou, Y. Zhu, F. Sheng, Z. Zhao, Y. Dong, J. Liu, B. Ye, X. Li, L. Ge, H. Wang, T. Xu, J. Am. Chem. Soc. 2022, 144, 10220–10229.
- 21Y. He, D. Luo, V. M. Lynch, M. Ahmed, J. L. Sessler, X. Chi, Chem 2023, 9, 93–101.
- 22X. Yang, J.-K. Sun, M. Kitta, H. Pang, Q. Xu, Nat. Catal. 2018, 1, 214–220.
- 23E. Martinez-Ahumada, D. He, V. Berryman, A. Lopez-Olvera, M. Hernandez, V. Jancik, V. Martis, M. A. Vera, E. Lima, D. J. Parker, A. I. Cooper, I. A. Ibarra, M. Liu, Angew. Chem. Int. Ed. 2021, 60, 17556–17563.
- 24K. Qu, J. Xu, L. Dai, Y. Wang, H. Cao, D. Zhang, Y. Wu, W. Xu, K. Huang, C. Lian, X. Guo, W. Jin, Z. Xu, Angew. Chem. Int. Ed. 2022, 61, e202205481.
- 25K. Tian, S. M. Elbert, X. Y. Hu, T. Kirschbaum, W. S. Zhang, F. Rominger, R. R. Schroder, M. Mastalerz, Adv. Mater. 2022, 34, e2202290.
- 26P. D. Jepson, R. J. Law, Science 2016, 352, 1388–1389.
- 27G. M. Shi, Y. Feng, B. Li, H. M. Tham, J.-Y. Lai, T.-S. Chung, Prog. Polym. Sci. 2021, 123, 101470.
- 28S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde, B. Van der Bruggen, Chem. Soc. Rev. 2019, 48, 2665–2681.
- 29M. F. Jimenez-Solomon, Q. Song, K. E. Jelfs, M. Munoz-Ibanez, A. G. Livingston, Nat. Mater. 2016, 15, 760–767.
- 30K. Dey, M. Pal, K. C. Rout, H. S. Kunjattu, A. Das, R. Mukherjee, U. K. Kharul, R. Banerjee, J. Am. Chem. Soc. 2017, 139, 13083–13091.
- 31M. Matsumoto, L. Valentino, G. M. Stiehl, H. B. Balch, A. R. Corcos, F. Wang, D. C. Ralph, B. J. Mariñas, W. R. Dichtel, Chem 2018, 4, 308–317.
- 32A. Giri, G. Shreeraj, T. K. Dutta, A. Patra, Angew. Chem. Int. Ed. 2023, 62, e202219083.
- 33S. Kandambeth, B. P. Biswal, H. D. Chaudhari, K. C. Rout, H. S. Kunjattu, S. Mitra, S. Karak, A. Das, R. Mukherjee, U. K. Kharul, R. Banerjee, Adv. Mater. 2017, 29, 1603945.
- 34X. Yang, Z. Ullah, J. F. Stoddart, C. T. Yavuz, Chem. Rev. 2023, 123, 4602–4634.
- 35J. R. Holst, A. Trewin, A. I. Cooper, Nat. Chem. 2010, 2, 915–920.
- 36J. M. Lucero, M. A. Carreon, ACS Appl. Mater. Interfaces 2020, 12, 32182–32188.
- 37Q. Song, S. Jiang, T. Hasell, M. Liu, S. Sun, A. K. Cheetham, E. Sivaniah, A. I. Cooper, Adv. Mater. 2016, 28, 2629–2637.
- 38J. Li, S. Y. Gao, J. Liu, S. Ye, Y. Feng, D. H. Si, R. Cao, Adv. Funct. Mater. 2023, 33, 2305735.
- 39M. O. Sinnokrot, C. D. Sherrill, J. Am. Chem. Soc. 2004, 126, 7690–7697.
- 40S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma, R. Banerjee, Nat. Commun. 2015, 6, 6786.
- 41Y.-P. Mo, X.-H. Liu, B. Sun, H.-J. Yan, D. Wang, L.-J. Wan, Phys. Chem. Chem. Phys. 2017, 19, 539–543.
- 42S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. 2013, 125, 13290–13294.
10.1002/ange.201306775 Google Scholar
- 43B. P. Benke, T. Kirschbaum, J. Graf, J. H. Gross, M. Mastalerz, Nat. Chem. 2023, 15, 413–423.
- 44S. Karan, Z. Jiang, A. G. Livingston, Science 2015, 348, 1347–1351.
- 45Z. Jiang, R. Dong, A. M. Evans, N. Biere, M. A. Ebrahim, S. Li, D. Anselmetti, W. R. Dichtel, A. G. Livingston, Nature 2022, 609, 58–64.
- 46Y. Jin, Q. Wang, P. Taynton, W. Zhang, Acc. Chem. Res. 2014, 47, 1575–1586.
- 47L. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff, M. Döblinger, T. Clark, K. W. Chapman, F. Auras, T. Bein, Nat. Chem. 2016, 8, 310–316.
- 48J. Liu, G. Han, D. Zhao, K. Lu, J. Gao, T.-S. Chung, Sci. Adv. 2020, 6, eabb1110.
- 49H. Wang, Y. Yang, X. Yuan, W. Liang Teo, Y. Wu, L. Tang, Y. Zhao, Mater. Today 2022, 53, 106–133.
- 50Deposition numbers 2291302 (for DFA-TAEA), 2291303 (for 2,5-DHA-TAEA), 2291304 (DHBD-TAEA) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/structures.
- 51B. Moosa, L. O. Alimi, A. Shkurenko, A. Fakim, P. M. Bhatt, G. Zhang, M. Eddaoudi, N. M. Khashab, Angew. Chem. Int. Ed. 2020, 59, 21367–21371.
- 52K. M. Acharyya, P. Sarathi, Angew. Chem. Int. Ed. 2019, 58, 8640–8653.
- 53A. Kovács, A. Szabó, I. Hargittai, Acc. Chem. Res. 2002, 35, 887–894.
- 54G. Gilli, F. Bellucci, V. Ferretti, V. Bertolasi, J. Am. Chem. Soc. 1989, 111, 1023–1028.
- 55M. O. S. C. D. Sinnokrot, J. Am. Chem. Soc. 2004, 126, 7690–7697.
- 56A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature 2017, 543, 637–646.
- 57G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478–2601.
- 58C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165–195.
- 59S. Yu, M. Yang, Y. Liu, M. Liu, Mater. Chem. Front. 2023, 7, 3560–3575.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.