Coordination Desymmetrization of Copper Single-Atom Catalyst for Efficient Nitrate Reduction
Zhengxiang Gu
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorYechuan Zhang
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorYang Fu
Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, 529020 China
Search for more papers by this authorDandan Hu
Advanced Research Institute and Department of Chemistry, Taizhou University, Tai Zhou Shi, Jiaojiang, 318000 China
Search for more papers by this authorCorresponding Author
Fang Peng
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorCorresponding Author
Yawen Tang
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorCorresponding Author
Huajun Yang
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorZhengxiang Gu
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorYechuan Zhang
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorYang Fu
Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, 529020 China
Search for more papers by this authorDandan Hu
Advanced Research Institute and Department of Chemistry, Taizhou University, Tai Zhou Shi, Jiaojiang, 318000 China
Search for more papers by this authorCorresponding Author
Fang Peng
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorCorresponding Author
Yawen Tang
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorCorresponding Author
Huajun Yang
School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
Search for more papers by this authorAbstract
Coordination engineering strategy for optimizing the catalytic performance of single-atom catalysts (SACs) has been rapidly developed over the last decade. However, previous reports on copper SACs for nitrate reduction reactions (NO3RR) have mostly focused on symmetric coordination configurations such as Cu-N4 and Cu-N3. In addition, the mechanism in terms of the regulation of coordination environment and catalytic properties of SACs has not been well demonstrated. Herein, we disrupted the local symmetric structure of copper atoms by introducing unsaturated heteroatomic coordination of Cu−O and Cu−N to achieve the coordination desymmetrization of Cu-N1O2 SACs. The Cu-N1O2 SACs exhibit an efficient nitrate-to-ammonia conversion with a high FE of ~96.5 % and a yield rate of 3120 μg NH3 h−1 cm−2 at −0.60 V vs RHE. As indicated by in situ Raman spectra, the catalysts facilitate the accumulation of NO3− and the selective adsorption of *NO2, which were further confirmed by the theoretical study of surface dipole moment and orbital hybridization. Our work illustrated the correlation between the coordination desymmetrization and the catalytic performance of copper SACs for NO3RR.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409125-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Liu, L. Qiao, S. Peng, H. Bai, C. Liu, W. F. Ip, K. H. Lo, H. Liu, K. W. Ng, S. Wang, X. Yang, H. Pan, Adv. Funct. Mater. 2023, 33, 2303480.
- 2Q. Fang, H. Yin, X. Mao, Y. Han, C. Yan, A. P. O'Mullane, A. Du, J. Phys. Chem. Lett. 2023, 14, 2410.
- 3X. Liang, H. Zhu, X. Yang, S. Xue, Z. Liang, X. Ren, A. Liu, G. Wu, Small Structures 2023, 4, 2200202.
- 4H. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Rüscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Z. Liu, W. Wang, B. R. Cuenya, J. Luo, Angew. Chem. Int. Ed. 2022, 61, e202202556.
- 5S. Zhang, J. Wu, M. Zheng, X. Jin, Z. Shen, Z. Li, Y. Wang, Q. Wang, X. Wang, H. Wei, J. Zhang, P. Wang, S. Zhang, L. Yu, L. Dong, Q. Zhu, H. Zhang, J. Lu, Nat. Commun. 2023, 14, 3634.
- 6G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, Nat. Energy 2020, 5, 605–613.
- 7J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J.-F. Li, Z.-Q. Tian, W. Liu, A. Wang, T. Zhang, J. Am. Chem. Soc. 2022, 144, 12062–12071.
- 8Y. Xue, Q. Yu, Q. Ma, Y. Chen, C. Zhang, W. Teng, J. Fan, W.-x. Zhang, Environ. Sci. Technol. 2022, 56, 14797–14807.
- 9S. Han, H. Li, T. Li, F. Chen, R. Yang, Y. Yu, B. Zhang, Nat. Catal. 2023, 6, 402–414.
- 10W. Song, L. Yue, X. Fan, Y. Luo, B. Ying, S. Sun, D. Zheng, Q. Liu, M. S. Hamdy, X. Sun, Inorg. Chem. Front. 2023, 10, 3489–3514.
- 11Y. Dai, H. Li, C. Wang, W. Xue, M. Zhang, D. Zhao, J. Xue, J. Li, L. Luo, C. Liu, X. Li, P. Cui, Q. Jiang, T. Zheng, S. Gu, Y. Zhang, J. Xiao, C. Xia, J. Zeng, Nat. Commun. 2023, 14, 3382.
- 12H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao, Q. Liu, Y. Lin, J. Pei, Z. Li, Z. Jiang, D. Zhou, L. Zheng, Y. Wang, J. Zhou, Z. Yang, R. Cao, R. Sarangi, T. Sun, X. Yang, X. Zheng, W. Yan, Z. Zhuang, J. Li, W. Chen, D. Wang, J. Zhang, Y. Li, Nat. Commun. 2020, 11, 3049.
- 13K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan, H. Yu, W. Choi, G. Zhang, B. Kim, J. G. Chen, Nat. Commun. 2020, 11, 2455.
- 14W. Zang, T. Yang, H. Zou, S. Xi, H. Zhang, X. Liu, Z. Kou, Y. Du, Y. P. Feng, L. Shen, L. Duan, J. Wang, S. J. Pennycook, ACS Catal. 2019, 9, 10166–10173.
- 15Y. Cai, J. Fu, Y. Zhou, Y.-C. Chang, Q. Min, J.-J. Zhu, Y. Lin, W. Zhu, Nat. Commun. 2021, 12, 586.
- 16Y. Zhang, Y. Wu, Y. Su, Y. Cao, Z. Liang, D. Yang, R. Yu, D. Zhang, J. Wu, W. Xiao, A. Lei, D. Gu, Small 2022, 18, 2105178.
- 17F.-Y. Chen, Z.-Y. Wu, S. Gupta, D. J. Rivera, S. V. Lambeets, S. Pecaut, J. Y. T. Kim, P. Zhu, Y. Z. Finfrock, D. M. Meira, G. King, G. Gao, W. Xu, D. A. Cullen, H. Zhou, Y. Han, D. E. Perea, C. L. Muhich, H. Wang, Nat. Nanotechnol. 2022, 17, 759–767.
- 18T. Zhang, Z. Sun, S. Li, B. Wang, Y. Liu, R. Zhang, Z. Zhao, Nat. Commun. 2022, 13, 6996.
- 19M.M Ma, D. Bong, Langmuir 2011, 27, 8841–8853.
- 20
- 20aT. Zhang, D. Zhang, X. Hua, T. Dong, X. Guo, C. Song, R. Si, W. Liu, Y. Liu, Z. Zhao, J. Am. Chem. Soc. 2022, 144, 1066;
- 20bT. Zhang, X. Nie, W. Yu, X. Guo, C. Song, Rui Si, Y. Liu, Z. Zhao, iScience 2019, 33, 97.
- 21
- 21aH. Cao, J. Wang, J.-H. Kim, Z. Guo, J. Xiao, J. Yang, J. Chang, Y. Shi, Y. Xie, Appl. Catal. B 2021, 296, 120362;
- 21bL. Sun, Y. Feng, K. Ma, X. Jiang, Z. Gao, J. Wang, N. Jiang, X. Liu, Appl. Catal. B 2022, 306, 121106.
- 22Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 2016, 10, 2745.
- 23X.-F. Cheng, J.-H. He, H.-Q. Ji, H.-Y. Zhang, Q. Cao, W.-J. Sun, C.-L. Yan, J.-M. Lu, Adv. Mater. 2022, 34, 2205767.
- 24
- 24aZ. Zhao, H. Yang, Y. Li, X. Guo, Green Chem. 2014, 16, 1274;
- 24bQ. Zhou, G. Ge, Z. Guo, Y. Liu, Z. Zhao, ACS Catal. 2020, 10, 14604.
- 25
- 25aY. Huang, B. Chen, J. Duan, F. Yang, T. Wang, Z. Wang, W. Yang, C. Hu, W. Luo, Y. Huang, Angew. Chem. Int. Ed. 2020, 59, 3699;
- 25bFan Yang, D. Liu, Y. Li, L. Cheng, J. Ye, Appl. Catal. B 2019, 240, 64.
- 26
- 26aL. Zeng, J. Chen, L. Zhong, W. Zhen, Y. Tay, S. Li, Y. Wang, L. Huang, Can Xue, Appl. Catal. B 2022, 307, 121154;
- 26bY. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, G. Zheng, ACS Catal. 2018, 8, 7113.
- 27H. Wu, J. Li, K. Qi, Y. Zhang, E. Petit, W. Wang, V. Flaud, N. Onofrio, B. Rebiere, L. Huang, C. Salameh, L. Lajaunie, P. Miele, D. Voiry, Nat. Commun. 2021, 12, 7210.
- 28Y. Cai, J. Fu, Y. Zhou, Y.-C. Chang, Q. Min, J.-J. Zhu, Y. Lin, W. Zhu, Nat. Commun. 2021, 12, 586.
- 29Z. Gu, Y. Zhang, X. Wei, Z. Duan, Q. Gong, K. Luo, Adv. Mater. 2023, 35, 2303107.
- 30
- 30aF. Zhang, Y. Zhu, C. Tang, Y. Chen, B. Qian, Z. Hu, Y.-C. Chang, C.-W. Pao, Q. Lin, S. A. Kazemi, Y. Wang, L. Zhang, X. Zhang, H. Wang, Adv. Funct. Mater. 2021, 32, 2110224;
- 30bT. Zhang, X. Han, H. Liu, M. Biset-Peiró, J. Li, X. Zhang, P. Tang, B. Yang, L. Zheng, J. R. Morante, J. Arbiol, Adv. Funct. Mater. 2022, 32, 2111446.
- 31W. Ni, Y. Gao, Y. Lin, C. Ma, X. Guo, S. Wang, S. Zhang, ACS Catal. 2021, 11, 5212.
- 32E. Pérez-Gallent, M. C. Figueiredo, I. Katsounaros, M. T. M. Koper, Electrochim. Acta 2017, 227, 77.
- 33Y. Bai, J. Lu, H. Bai, Z. Fang, F. Wang, Y. Liu, D. Sun, B. Luo, W. Fan, W. Shi, Chem. Eng. J. 2021, 414, 128773.
- 34Y. Bai, H. Bai, Z. Fang, X. Li, W. Fan, W. Shi, Chem. Commun. 2021, 57, 10568.
- 35L. Wang, J. Cao, X. Cheng, C. Lei, Q. Dai, B. Yang, Z. Li, M. A. Younis, L. Lei, Y. Hou, K. Ostrikov, ACS Sustainable Chem. Eng. 2019, 7, 10044.
- 36
- 36aC. Wang, J. Gao, J. G. Zhao, D. J. Yan, X. D. Zhu, Small 2020, 16, e1907091;
- 36bK. Chu, X. Li, Q. Li, Y. Guo, H. Zhang, Small 2021, 17, e2102363.
- 37S. Han, H. Li, T. Li, F. Chen, R. Yang, Y. Yu, B. Zhang, Nat. Catal. 2023, 6, 402.
- 38Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 2021, 50, 6720.
- 39
- 39aR. Hao, L. Tian, C. Wang, L. Wang, Y. Liu, G. Wang, W. Li, G. A. Ozin, Chem. Catal. 2022, 2, 622;
- 39bH. Hu, S. Cai, H. Li, L. Huang, L. Shi, D. Zhang, ACS Catal. 2015, 5, 6069.
- 40R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu, B. Zhang, ACS Catal. 2020, 10, 3533–3540.
- 41N Zhang, J Shang, X Deng, L Cai, R Long, Y. Xiong, Y Chai, ACS Nano 2022, 16, 4795–4804.
- 42S. Vijay, G. Kastlunger, K. Chan, J. K. Nørskov, J. Chem. Phys. 2022, 156, 231102.
- 43H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao, Q. Liu, Y. Lin, J. Pei, Z. Li, Z. Jiang, D. Zhou, L. Zheng, Y. Wang, J. Zhou, Z. Yang, R. Cao, R. Sarangi, T. Sun, X. Yang, X. Zheng, W. Yan, Z. Zhuang, J. Li, W. Chen, D. Wang, J. Zhang, Y. Li, Nat. Commun. 2020, 11, 3049.
- 44S. Vijay, W. Ju, S. Brückner, S.-C. Tsang, P. Strasser, K. Chan, Nat. Catal. 2021, 4, 1024–1031.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.