Full Selectivity Control over the Catalytic Hydrogenation of Nitroaromatics Into Six Products
Qingyuan Wu
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorWang Su
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorRui Huang
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorHui Shen
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorMengfei Qiao
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorRuixuan Qin
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorCorresponding Author
Nanfeng Zheng
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorQingyuan Wu
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorWang Su
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorRui Huang
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorHui Shen
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorMengfei Qiao
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorRuixuan Qin
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorCorresponding Author
Nanfeng Zheng
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorAbstract
A full selectivity control over the catalytic hydrogenation of nitroaromatics leads to the production of six possible products, i.e., nitroso, hydroxylamine, azoxy, azo, hydrazo or aniline compounds, which has however not been achieved in the field of heterogeneous catalysis. Currently, there is no sufficient evidence to support that the catalytic hydrogenation of nitroaromatics with the use of heterogeneous metal catalysts would follow the Haber's mechanistic scheme based on electrochemical reduction. We now demonstrate in this work that it is possible to fully control the catalytic hydrogenation of nitroaromatics into their all six products using a single catalytic system under various conditions. Employing SnO2-supported Pt nanoparticles facilitated by the surface coordination of ethylenediamine and vanadium species enabled this unprecedented selectivity control. Through systematic investigation into the controlled production of all products and their chemical reactivities, we have constructed a detailed reaction network for the catalytic hydrogenation of nitroaromatics. Crucially, using oxygen-isolated characterization techniques is essential for identifying unstable compounds such as nitroso, hydroxylamine, hydrazo compounds. The insights gained from this research offer invaluable guidance for selectively transforming nitroaromatics into a wide array of functional N-containing compounds, both advancing fundamental understanding and fostering practical applications in various fields.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408731-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Chen, C. Xu, X. Huang, J. Ye, L. Gu, G. Li, Z. Tang, B. Wu, H. Yang, Z. Zhao, Z. Zhou, G. Fu, N. Zheng, Nat. Mater. 2016, 15, 564–569.
- 2R. Noyori, Nat. Chem. 2009, 1, 5–6.
- 3G. A. Somorjai, R. M. Rioux, Catal. Today 2005, 100, 201–215.
- 4A. Corma, P. Serna, P. Concepcion, J. J. Calvino, J. Am. Chem. Soc. 2008, 130, 8748–8753.
- 5G. A. Somorjai, J. Y. Park, Angew. Chem. Int. Ed. 2008, 47, 9212–9228.
- 6S. Mitchell, R. X. Qin, N. F. Zheng, J. Perez-Ramirez, Nat. Nanotechnol. 2021, 16, 129–139.
- 7G. A. Somorjai, H. Frei, J. Y. Park, J. Am. Chem. Soc. 2009, 131, 16589–16605.
- 8H. Shen, Q. Wu, S. Malola, Y.-Z. Han, Z. Xu, R. Qin, X. Tang, Y.-B. Chen, B. K. Teo, H. Häkkinen, N. Zheng, J. Am. Chem. Soc. 2022, 144, 10844–10853.
- 9Q. Wu, R. Qin, M. Zhu, H. Shen, S. Yu, Y. Zhong, G. Fu, X. Yi, N. Zheng, Chem. Sci. 2024, 15, 3140–3147.
- 10H.-U. Blaser, H. Steiner, M. Studer, ChemCatChem 2009, 1, 210–221.
- 11S. Zhang, C.-R. Chang, Z.-Q. Huang, J. Li, Z. Wu, Y. Ma, Z. Zhang, Y. Wang, Y. Qu, J. Am. Chem. Soc. 2016, 138, 2629–2637.
- 12H. Shen, Q. Wu, M. S. Asre Hazer, X. Tang, Y.-Z. Han, R. Qin, C. Ma, S. Malola, B. K. Teo, H. Häkkinen, N. Zheng, Chem 2022, 8, 2380–2392.
- 13P. Ruan, B. Chen, Q. Zhou, H. Zhang, Y. Wang, K. Liu, W. Zhou, R. Qin, Z. Liu, G. Fu, N. Zheng, Innovation 2023, 4, 100362.
- 14A. Corma, P. Serna, Science 2006, 313, 332–334.
- 15H.-U. B. a. S. Peter Baumeister, Catal. Lett. 1997, 49, 219–222.
- 16J. Song, Z.-F. Huang, L. Pan, K. Li, X. Zhang, L. Wang, J.-J. Zou, Appl. Catal. B 2018, 227, 386–408.
- 17P. Serna, M. Boronat, A. Corma, Top. Catal. 2011, 54, 439–446.
- 18A. Corma, C. González-Arellano, M. Iglesias, F. Sánchez, Appl. Catal. A 2009, 356, 99–102.
- 19Y. Zhong, P. Liao, J. Kang, Q. Liu, S. Wang, S. Li, X. Liu, G. Li, J. Am. Chem. Soc. 2023, 145, 4659–4666.
- 20A. C. Abdessamad Grirrane, Hermenegildo García, Science 2008, 322, 1661–1664.
- 21R. S. Downing, P. J. Kunkeler, H. van Bekkum, Catal. Today 1997, 37, 121–136.
- 22R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner, M. Beller, Science 2013, 342, 1073–1076.
- 23F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.-M. Pohl, J. Radnik, A.-E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Brückner, M. Beller, Nat. Chem. 2013, 5, 537–543.
- 24P. Zuman, B. Shah, Chem. Rev. 1994, 94, 1621–1641.
- 25M. Song, H. Zhou, G. Wang, B. Ma, Y. Jiang, J. Yang, C. Huo, X. C. Wang, J. Org. Chem. 2021, 86, 4804–4811.
- 26N. L. Dunn, M. Ha, A. T. Radosevich, J. Am. Chem. Soc. 2012, 134, 11330–11333.
- 27M. R. Akula, G. W. Kabalka, Synth. Commun. 1996, 26, 3821–3825.
- 28J. Griffiths, Chem. Soc. Rev. 1972, 1, 481–493.
- 29S. S. Acharyya, S. Ghosh, R. Bal, ACS Sustainable Chem. Eng. 2014, 2, 584–589.
- 30E. Drug, M. Gozin, J. Am. Chem. Soc. 2007, 129, 13784–13785.
- 31S.-I. Murahashi, Y. Imada, Chem. Rev. 2019, 119, 4684–4716.
- 32G. Wienhöfer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar, M. Beller, J. Am. Chem. Soc. 2011, 133, 12875–12879.
- 33H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S. Miao, J. Liu, T. Zhang, Nat. Commun. 2014, 5, 5634.
- 34P. Serna, P. Concepción, A. Corma, J. Catal. 2009, 265, 19–25.
- 35Q. Liu, Y. Xu, X. Qiu, C. Huang, M. Liu, J. Catal. 2019, 370, 55–60.
- 36T. Zhang, Z. Xie, L. Jiang, W. Zhao, S. Cao, B. Wang, R. Si, R. Zhang, Y. Liu, Z. Zhao, Chem. Eng. J. 2022, 443, 136416.
- 37D. Formenti, F. Ferretti, F. K. Scharnagl, M. Beller, Chem. Rev. 2019, 119, 2611–2680.
- 38Z. E. F. Haber, Angew. Phys. Chem. 1898, 22, 506.
- 39E. A. Gelder, S. D. Jackson, C. M. Lok, Chem. Commun. 2005, 59, 522–524.
- 40M. Boronat, P. Concepción, A. Corma, S. González, F. Illas, P. Serna, J. Am. Chem. Soc. 2007, 129, 16230–16237.
- 41X. Deng, B. Qin, R. Liu, X. Qin, W. Dai, G. Wu, N. Guan, D. Ma, L. Li, J. Am. Chem. Soc. 2021, 143, 20898–20906.
- 42Q. Wu, W. Zhou, H. Shen, R. Qin, Q. Hong, X. Yi, N. Zheng, CCS Chem. 2023, 5, 1215–1224.
- 43Y. Wang, R. Qin, Y. Wang, J. Ren, W. Zhou, L. Li, J. Ming, W. Zhang, G. Fu, N. Zheng, Angew. Chem. Int. Ed. 2020, 59, 12736–12740.
- 44P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016, 352, 797–801.
- 45W. Zhang, Q. Qin, L. Dai, R. Qin, X. Zhao, X. Chen, D. Ou, J. Chen, T. T. Chuong, B. Wu, N. Zheng, Angew. Chem. Int. Ed. 2018, 57, 9475–9479.
- 46G. Chen, Y. Zhao, G. Fu, P. N. Duchesne, L. Gu, Y. Zheng, X. Weng, M. Chen, P. Zhang, C.-W. J. S. Pao, Science 2014, 344, 495–499.
- 47Q. Wu, R. Qin, D. Zang, W. Zhang, B. Wu, N. Zheng, Acta Chim. Sin. 2018, 76, 617–621.
- 48L. Dai, Q. Qin, P. Wang, X. Zhao, C. Hu, P. Liu, R. Qin, M. Chen, D. Ou, C. Xu, S. Mo, B. Wu, G. Fu, P. Zhang, N. Zheng, Sci. Adv. 2017, 3, e1701069.
- 49C. Lentz, S. P. Jand, J. Melke, C. Roth, P. Kaghazchi, J. Mol. Catal. A 2017, 426, 1–9.
- 50K. Li, R. Qin, K. Liu, W. Zhou, N. Liu, Y. Zhang, S. Liu, J. Chen, G. Fu, N. Zheng, ACS Appl. Mater. Interfaces 2021, 13, 52193–52201.
- 51M. Studer, S. Neto, H. U. Blaser, Top. Catal. 2000, 13, 205–212.
- 52A. Corma, P. Concepción, P. Serna, Angew. Chem. Int. Ed. 2007, 119, 7404–7407.
10.1002/ange.200700823 Google Scholar
- 53Y. Liu, W. Miao, W. Tang, D. Xue, J. Xiao, C. Wang, C. Li, Chem. Asian J. 2021, 16, 1725–1729.
- 54X. Wang, X. Wang, C. Xia, L. Wu, Green Chem. 2019, 21, 4189–4193.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.