Linearly Arranged Multi-π-Stacked Structure for Efficient Through-Space Charge-Transfer Emitters
Dr. Yang-Kun Qu
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorDr. Dong-Ying Zhou
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorQi Zheng
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorPeng Zuo
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorZong-Lu Che
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorProf. Liang-Sheng Liao
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR China
Search for more papers by this authorCorresponding Author
Prof. Zuo-Quan Jiang
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorDr. Yang-Kun Qu
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorDr. Dong-Ying Zhou
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorQi Zheng
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorPeng Zuo
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorZong-Lu Che
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorProf. Liang-Sheng Liao
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR China
Search for more papers by this authorCorresponding Author
Prof. Zuo-Quan Jiang
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu PR China
Search for more papers by this authorAbstract
Noncovalent spatial interaction has become an intriguing and important tool for constructing optoelectronic molecules. In this study, we linearly attached three conjugated units in a multi π-stacked manner by using just one trident bridge based on indeno[2,1-b]fluorene. To achieve this structure, we improved the synthetic approach through double C−H activation, significantly simplifying the preparation process. Due to the proximity of the C10, C11, and C12 sites in indeno[2,1-b]fluorene, we derived two novel donor|acceptor|donor (D|A|D) type molecules, 2DMB and 2DMFB, which exhibited closely packed intramolecular stacking, enabling efficient through-space charge transfer. This molecular construction is particularly suitable for developing high-performance thermally activated delayed fluorescence materials. With donor(s) and acceptor(s) constrained and separated within this spatially rigid structure, elevated radiative transition rates, and high photoluminescence quantum yields were achieved. Organic light-emitting diodes incorporating 2DMB and 2DMFB demonstrated superior efficiency, achieving maximum external quantum efficiencies of 28.6 % and 16.2 %, respectively.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408712-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Chang, J. Chen, J. Bao, T. Sun, Z. Cheng, Chem. Rev. 2023, 123, 13966–14037.
- 2W. Tao, O. C. Farokhzad, Chem. Rev. 2022, 122, 5405–5407.
- 3
- 3aG. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, S. Bräse, Adv. Mater. 2021, 33, 2005630;
- 3bH.-H. Cho, D. G. Congrave, A. J. Gillett, S. Montanaro, H. E. Francis, V. Riesgo-Gonzalez, J. Ye, R. Chowdury, W. Zeng, M. K. Etherington, J. Royakkers, O. Millington, A. D. Bond, F. Plasser, J. M. Frost, C. P. Grey, A. Rao, R. H. Friend, N. C. Greenham, H. Bronstein, Nat. Mater. 2024, 23, 519–526.
- 4N. J. Turro, V. Ramamurthy, J. C. Scaiano, Modern molecular photochemistry of organic molecules, Vol. 188, University Science Books Sausalito, CA 2010.
- 5
- 5aH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238;
- 5bY. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
- 6L.-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 1571–1575.
- 7
- 7aT.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv. Mater. 2016, 28, 6976–6983;
- 7bW. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater. 2018, 30, 1704961;
- 7cY.-L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hänisch, S. Reineke, J. Fan, L.-S. Liao, Adv. Mater. 2019, 31, 1902368;
- 7dC.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203–207;
- 7eS. O. Jeon, K. H. Lee, J. S. Kim, S.-G. Ihn, Y. S. Chung, J. W. Kim, H. Lee, S. Kim, H. Choi, J. Y. Lee, Nat. Photonics 2021, 15, 208–215;
- 7fY. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678–682;
- 7gT.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photonics 2018, 12, 235–240.
- 8
- 8aY. Geng, A. D'Aleo, K. Inada, L.-S. Cui, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 16536–16540;
- 8bY.-Z. Shi, K. Wang, X. Li, G.-L. Dai, W. Liu, K. Ke, M. Zhang, S.-L. Tao, C.-J. Zheng, X.-M. Ou, X.-H. Zhang, Angew. Chem. Int. Ed. 2018, 57, 9480–9484.
- 9Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915–1016.
- 10
- 10aK. Kawasumi, T. Wu, T. Zhu, H. S. Chae, T. Van Voorhis, M. A. Baldo, T. M. Swager, J. Am. Chem. Soc. 2015, 137, 11908–11911;
- 10bS.-Y. Yang, Y.-K. Qu, L.-S. Liao, Z.-Q. Jiang, S.-T. Lee, Adv. Mater. 2022, 34, 2104125;
- 10cQ. Xue, G. Xie, Adv. Opt. Mater. 2021, 9, 2002204;
- 10dS. Shao, L. Wang, Aggregate 2020, 1, 45–56;
- 10eT. Zhang, Y. Xiao, H. Wang, S. Kong, R. Huang, V. Ka-Man Au, T. Yu, W. Huang, Angew. Chem. Int. Ed. 2023, 62, e202301896;
- 10fS. Kumar, L. G. Franca, K. Stavrou, E. Crovini, D. B. Cordes, A. M. Z. Slawin, A. P. Monkman, E. Zysman-Colman, J. Phys. Chem. Lett. 2021, 12, 2820–2830;
- 10gY.-K. Qu, Q. Zheng, J. Fan, L.-S. Liao, Z.-Q. Jiang, Acc. Mater. Res. 2021, 2, 1261–1271;
- 10hQ. Li, J. Hu, J. Lv, X. Wang, S. Shao, L. Wang, X. Jing, F. Wang, Angew. Chem. Int. Ed. 2020, 59, 20174–20182;
- 10iC. Wu, W. Liu, K. Li, G. Cheng, J. Xiong, T. Teng, C.-M. Che, C. Yang, Angew. Chem. Int. Ed. 2021, 60, 3994–3998;
- 10jC. Jiang, J. Miao, D. Zhang, Z. Wen, C. Yang, K. Li, Research 2022, 2022, 9892802;
- 10kL. Chen, C. Li, E. Fu, M. Li, Y. Kuboi, Z.-Y. Li, Z. Chen, J. Chen, X. Liu, X. Tang, L. Frédéric, F. Maurel, C. Adachi, F. Mathevet, S. Zhang, ACS Materials Lett. 2023, 5, 1450–1455.
- 11X. Tang, L.-S. Cui, H.-C. Li, A. J. Gillett, F. Auras, Y.-K. Qu, C. Zhong, S. T. E. Jones, Z.-Q. Jiang, R. H. Friend, L.-S. Liao, Nat. Mater. 2020, 19, 1332–1338.
- 12
- 12aY. Song, M. Tian, R. Yu, L. He, ACS Appl. Mater. Interfaces 2021, 13, 60269–60278;
- 12bC.-C. Peng, S.-Y. Yang, H.-C. Li, G.-H. Xie, L.-S. Cui, S.-N. Zou, C. Poriel, Z.-Q. Jiang, L.-S. Liao, Adv. Mater. 2020, 32, 2003885;
- 12cT. Huang, Q. Wang, G. Meng, L. Duan, D. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200059;
- 12dX.-Q. Wang, S.-Y. Yang, Q.-S. Tian, C. Zhong, Y.-K. Qu, Y.-J. Yu, Z.-Q. Jiang, L.-S. Liao, Angew. Chem. Int. Ed. 2021, 60, 5213–5219;
- 12eZ. Zhao, C. Zeng, X. Peng, Y. Liu, H. Zhao, L. Hua, S.-J. Su, S. Yan, Z. Ren, Angew. Chem. Int. Ed. 2022, 61, e202210864;
- 12fQ. Zheng, X.-Q. Wang, Y.-K. Qu, G. Xie, L.-S. Liao, Z.-Q. Jiang, npj Flex. Electron. 2022, 6, 83.
- 13
- 13aC. Poriel, J. Rault-Berthelot, Acc. Mater. Res. 2022, 3, 379–390;
- 13bM. Romain, D. Tondelier, J.-C. Vanel, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, C. Poriel, Angew. Chem. Int. Ed. 2013, 52, 14147–14151;
- 13cC. Poriel, J. Rault-Berthelot, Chem. Soc. Rev. 2023, 52, 6754–6805.
- 14L. J. Sicard, H.-C. Li, Q. Wang, X.-Y. Liu, O. Jeannin, J. Rault-Berthelot, L.-S. Liao, Z.-Q. Jiang, C. Poriel, Angew. Chem. Int. Ed. 2019, 58, 3848–3853.
- 15
- 15aJ. Das, D. K. Mal, S. Maji, D. Maiti, ACS Catal. 2021, 11, 4205–4229;
- 15bS. K. Sinha, S. Guin, S. Maiti, J. P. Biswas, S. Porey, D. Maiti, Chem. Rev. 2022, 122, 5682–5841;
- 15cC. Arroniz, J. G. Denis, A. Ironmonger, G. Rassias, I. Larrosa, Chem. Sci. 2014, 5, 3509–3514;
- 15dC. Arroniz, A. Ironmonger, G. Rassias, I. Larrosa, Org. Lett. 2013, 15, 910–913.
- 16Deposition Number(s) 2353244 (for 2DMB), 2353245 (for 2DMFB), 2014513 (for DMFB) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 17X. Zheng, R. Huang, C. Zhong, G. Xie, W. Ning, M. Huang, F. Ni, F. B. Dias, C. Yang, Adv. Sci. 2020, 7, 1902087.
- 18
- 18aZ. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 461–467;
- 18bT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 19
- 19aF. B. Dias, J. Santos, D. R. Graves, P. Data, R. S. Nobuyasu, M. A. Fox, A. S. Batsanov, T. Palmeira, M. N. Berberan-Santos, M. R. Bryce, A. P. Monkman, Adv. Sci. 2016, 3, 1600080;
- 19bV. Lawetz, G. Orlandi, W. Siebrand, J. Chem. Phys. 1972, 56, 4058–4072;
- 19cY. Olivier, M. Moral, L. Muccioli, J.-C. Sancho-García, J. Mater. Chem. C 2017, 5, 5718–5729;
- 19dJ. Chen, X. Xiao, S. Li, Y. Duan, G. Wang, Y. Liao, Q. Peng, H. Fu, H. Geng, Z. Shuai, J. Phys. Chem. Lett. 2022, 13, 2653–2660;
- 19eL. G. Franca, A. Danos, R. Saxena, S. Kuila, K. Stavrou, C. Li, S. Wedler, A. Köhler, A. P. Monkman, J. Phys. Chem. Lett. 2024, 15, 1734–1740;
- 19fH. S. Kim, S. H. Lee, S. Yoo, C. Adachi, Nat. Commun. 2024, 15, 2267;
- 19gT. Hosokai, H. Matsuzaki, H. Nakanotani, K. Tokumaru, T. Tsutsui, A. Furube, K. Nasu, H. Nomura, M. Yahiro, C. Adachi, Sci. Adv. 2017, 3, e1603282.
- 20The EQE of DMFB is nearly consistent with a previous report[12e] at similar luminance.
- 21Y.-K. Qu, D.-Y. Zhou, F.-C. Kong, Q. Zheng, X. Tang, Y.-H. Zhu, C.-C. Huang, Z.-Q. Feng, J. Fan, C. Adachi, L.-S. Liao, Z.-Q. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202201886.
- 22C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García, E. Hénon, Phys. Chem. Chem. Phys. 2017, 19, 17928–17936.
- 23W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.
- 24
- 24aQ. Zhang, H. Kuwabara, W. J. Potscavage, S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070–18081;
- 24bT.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photonics 2018, 12, 235–240;
- 24cQ. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photonics 2014, 8, 326–332.
- 25M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT 2016.
- 26
- 26aF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305;
- 26bJ.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.