Artificial Channels Based on Bottlebrush Polymers: Enhanced Ion Transport Through Polymer Topology Control
Yangyang Lin
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
These authors contribute equally to this work.
Search for more papers by this authorBei Wu
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
These authors contribute equally to this work.
Search for more papers by this authorHaoxuan Yuan
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorChangxing Ji
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorZiqi Liu
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYan Sui
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorTingting Yin
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Xian Kong
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYuting Zhu
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorJie Chen
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Chao Lang
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYangyang Lin
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
These authors contribute equally to this work.
Search for more papers by this authorBei Wu
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
These authors contribute equally to this work.
Search for more papers by this authorHaoxuan Yuan
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorChangxing Ji
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorZiqi Liu
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYan Sui
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorTingting Yin
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Xian Kong
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYuting Zhu
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorJie Chen
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Chao Lang
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640 China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorAbstract
Synthetic structures mimicking the transport function of natural ion channel proteins have a wide range of applications, including therapeutic treatments, separation membranes, sensing, and biotechnologies. However, the development of polymer-based artificial channels has been hampered due to the limitation on available models. In this study, we demonstrate the great potential of bottlebrush polymers as accessible and versatile molecular scaffolds for developing efficient artificial ion channels. Adopting the bottlebrush configuration enhanced ion transport activity of the channels compared to their linear analogs. Matching the structure of lipid bilayers, the bottlebrush channel with a hydrophilic-hydrophobic-hydrophilic triblock architecture exhibited the highest activity among the series. Functionalized with urea groups, these channels displayed high anion selectivity. Additionally, we illustrated that the transport properties could be fine-tuned by modifying the chemistry of ion binding sites. This work not only highlights the importance of polymer topology control in channel design, but also reveals the great potential for further developing bottlebrush channels with customized features and diverse functionalities.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408558-sup-0001-misc_information.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Hille, Biophys. J. 1978, 22(2), 283–294.
- 2V. Amendola, L. Fabbrizzi, L. Mosca, Chem. Soc. Rev. 2010, 39(10), 3889–3915.
- 3T. M. Fyles, Chem. Soc. Rev. 2007, 36(2), 335–347.
- 4S. Matile, A. Vargas Jentzsch, J. Montenegro, A. Fin, Chem. Soc. Rev. 2011, 40(5), 2453–2474.
- 5H. Valkenier, A. P. Davis, Acc. Chem. Res. 2013, 46(12), 2898–2909.
- 6N. Busschaert, P. A. Gale, Angew. Chem. Int. Ed. 2013, 52(5), 1374–1382.
- 7W. Si, P. Xin, Z.-T. Li, J.-L. Hou, Acc. Chem. Res. 2015, 48(6), 1612–1619.
- 8S. Howorka, Nat. Nanotechnol. 2017, 12(7), 619–630.
- 9S.-P. Zheng, L.-B. Huang, Z. Sun, M. Barboiu, Angew. Chem. Int. Ed. 2021, 60(2), 566–597.
- 10J. Yang, G. Yu, J. L. Sessler, I. Shin, P. A. Gale, F. Huang, Chem 2021, 7(12), 3256–3291.
- 11W. Xin, L. Jiang, L. Wen, Angew. Chem. Int. Ed. 2022, 61(40), e202207369.
- 12N. Misra, J. A. Martinez, S.-C. J. Huang, Y. Wang, P. Stroeve, C. P. Grigoropoulos, A. Noy, Proc. Natl. Acad. Sci. USA 2009, 106(33), 13780–13784.
- 13S.-K. Ko, S. K. Kim, A. Share, V. M. Lynch, J. Park, W. Namkung, W. Van Rossom, N. Busschaert, P. A. Gale, J. L. Sessler, et al., Nat. Chem. 2014, 6(10), 885–892.
- 14N. Busschaert, S.-H. Park, K.-H. Baek, Y. P. Choi, J. Park, E. N. W. Howe, J. R. Hiscock, L. E. Karagiannidis, I. Marques, V. Félix, et al., Nat. Chem. 2017, 9(7), 667–675.
- 15K. A. Muraglia, R. S. Chorghade, B. R. Kim, X. X. Tang, V. S. Shah, A. S. Grillo, P. N. Daniels, A. G. Cioffi, P. H. Karp, L. Zhu, et al., Nature 2019, 567(7748), 405–408.
- 16H. Li, H. Valkenier, L. W. Judd, P. R. Brotherhood, S. Hussain, J. A. Cooper, O. Jurček, H. A. Sparkes, D. N. Sheppard, A. P. Davis, Nat. Chem. 2016, 8(1), 24–32.
- 17M. X. Macrae, S. Blake, X. Jiang, R. Capone, D. J. Estes, M. Mayer, J. Yang, ACS Nano 2009, 3(11), 3567–3580.
- 18C. Lang, X. Zhang, Z. Dong, Q. Luo, S. Qiao, Z. Huang, X. Fan, J. Xu, J. Liu, Nanoscale 2016, 8(5), 2960–2966.
- 19Y. Wu, J. J. Gooding, Chem. Soc. Rev. 2022, 51(10), 3862–3885.
- 20Y.-x. Shen, W. C. Song, D. R. Barden, T. Ren, C. Lang, H. Feroz, C. B. Henderson, P. O. Saboe, D. Tsai, H. Yan, et al., Nat. Commun. 2018, 9(2294).
- 21W. Song, Y.-x. Shen, C. Lang, P. Saha, I. V. Zenyuk, R. J. Hickey, M. Kumar, Faraday Discuss. 2018, 209, 193–204.
- 22C. Lang, D. Ye, W. Song, C. Yao, Y.-m. Tu, C. Capparelli, J. A. LaNasa, M. A. Hickner, E. W. Gomez, E. D. Gomez, et al., ACS Nano 2019, 13(7), 8292–8302.
- 23Y.-M. Tu, W. Song, T. Ren, Y.-x. Shen, R. Chowdhury, P. Rajapaksha, T. E. Culp, L. Samineni, C. Lang, A. Thokkadam, et al., Nat. Mater. 2020, 19(3), 347–354.
- 24C. Lang, M. Kumar, R. J. Hickey, Soft Matter 2021, 17(46), 10405–10415.
- 25Z. Hemmatian, S. Keene, E. Josberger, T. Miyake, C. Arboleda, J. Soto-Rodríguez, F. Baneyx, M. Rolandi, Nat. Commun. 2016, 7(1), 12981.
- 26W. Si, Z.-T. Li, J.-L. Hou, Angew. Chem. Int. Ed. 2014, 53(18), 4578–4581.
- 27T. Muraoka, K. Umetsu, K. V. Tabata, T. Hamada, H. Noji, T. Yamashita, K. Kinbara, J. Am. Chem. Soc. 2017, 139(49), 18016–18023.
- 28P. Xin, H. Kong, Y. Sun, L. Zhao, H. Fang, H. Zhu, T. Jiang, J. Guo, Q. Zhang, W. Dong, et al., Angew. Chem. Int. Ed. 2019, 58(9), 2779–2784.
- 29W.-L. Huang, X.-D. Wang, Y.-F. Ao, Q.-Q. Wang, D.-X. Wang, J. Am. Chem. Soc. 2020, 142(31), 13273–13277.
- 30D. Qiao, H. Joshi, H. Zhu, F. Wang, Y. Xu, J. Gao, F. Huang, A. Aksimentiev, J. J. Feng, Am. Chem. 2021.
- 31C. Lang, X. Deng, F. Yang, B. Yang, W. Wang, S. Qi, X. Zhang, C. Zhang, Z. Dong, J. Liu, Angew. Chem. Int. Ed. 2017, 56(41), 12668–12671.
- 32H. Zhang, R. Ye, Y. Mu, T. Li, H. Zeng, Nano Lett. 2021, 21(3), 1384–1391.
- 33X. Zhou, G. Liu, K. Yamato, Y. Shen, R. Cheng, X. Wei, W. Bai, Y. Gao, H. Li, Y. Liu, et al., Nat. Commun. 2012, 3(1), 949.
- 34D. P. August, S. Borsley, S. L. Cockroft, F. della Sala, D. A. Leigh, S. J. Webb, J. Am. Chem. Soc. 2020, 142(44), 18859–18865.
- 35C. Wang, S. Wang, H. Yang, Y. Xiang, X. Wang, C. Bao, L. Zhu, H. Tian, D.-H. Qu, Angew. Chem. Int. Ed. 2021, 60(27), 14836–14840.
- 36D. Mondal, M. Ahmad, B. Dey, A. Mondal, P. Talukdar, Nat. Commun. 2022, 13(1), 6507.
- 37Q. Zhong, Y. Cao, X. Xie, Y. Wu, Z. Chen, Q. Zhang, C. Jia, Z. Wu, P. Xin, X. Yan, et al., Angew. Chem. Int. Ed. 2024, 63(3), e202314666.
- 38F. Vial, A. G. Oukhaled, L. Auvray, C. Tribet, Soft Matter 2007, 3(1), 75–78.
- 39W. H. Binder, Angew. Chem. Int. Ed. 2008, 47(17), 3092–3095.
- 40T. Jiang, A. Hall, M. Eres, Z. Hemmatian, B. Qiao, Y. Zhou, Z. Ruan, A. D. Couse, W. T. Heller, H. Huang, et al., Nature 2020, 577(7789), 216–220.
- 41H.-C. Chiu, Y.-W. Lin, Y.-F. Huang, C.-K. Chuang, C.-S. Chern, Angew. Chem. Int. Ed. 2008, 47(10), 1875–1878.
- 42T. Yan, S. Liu, C. Li, J. Xu, S. Yu, T. Wang, H. Sun, J. Liu, Angew. Chem. Int. Ed. 2022, 61(42), e202210214.
- 43J. Shen, J. Fan, R. Ye, N. Li, Y. Mu, H. Zeng, Angew. Chem. Int. Ed. 2020, 59(32), 13328–13334.
- 44C. Lang, W. Li, Z. Dong, X. Zhang, F. Yang, B. Yang, X. Deng, C. Zhang, J. Xu, J. Liu, Angew. Chem. Int. Ed. 2016, 55(33), 9723–9727.
- 45C. Zhang, J. Tian, S. Qi, B. Yang, Z. Dong, Nano Lett. 2020, 20(5), 3627–3632.
- 46F. Chen, J. Shen, N. Li, A. Roy, R. Ye, C. Ren, H. Zeng, Angew. Chem. Int. Ed. 2020, 59(4), 1440–1444.
- 47A. Roy, J. Shen, H. Joshi, W. Song, Y.-M. Tu, R. Chowdhury, R. Ye, N. Li, C. Ren, M. Kumar, et al., Nat. Nanotechnol. 2021, 16, 911–917.
- 48M. Wintermantel, K. Fischer, M. Gerle, R. Ries, M. Schmidt, K. Kajiwara, H. Urakawa, I. Wataoka, Angew. Chem. Int. Ed. 1995, 34(13–14), 1472–1474.
- 49S. Jha, S. Dutta, N. B. Bowden, Macromolecules 2004, 37(12), 4365–4374.
- 50S. S. Sheiko, B. S. Sumerlin, K. Matyjaszewski, Prog. Polym. Sci. 2008, 33(7), 759–785.
- 51C. Feng, Y. Li, D. Yang, J. Hu, X. Zhang, X. Huang, Chem. Soc. Rev. 2011, 40(3), 1282–1295.
- 52R. Verduzco, X. Li, S. L. Pesek, G. E. Stein, Chem. Soc. Rev. 2015, 44(8), 2405–2420.
- 53J. C. Foster, S. Varlas, B. Couturaud, Z. Coe, R. K. O'Reilly, J. Am. Chem. Soc. 2019, 141(7), 2742–2753.
- 54Z. Li, M. Tang, S. Liang, M. Zhang, G. M. Biesold, Y. He, S.-M. Hao, W. Choi, Y. Liu, J. Peng, et al., Prog. Polym. Sci. 2021, 116, 101387.
- 55B. R. Sveinbjörnsson, R. A. Weitekamp, G. M. Miyake, Y. Xia, H. A. Atwater, R. H. Grubbs, Proc. Natl. Acad. Sci. USA 2012, 109 (36), 14332–14336.
- 56B. B. Patel, D. J. Walsh, D. H. Kim, J. Kwok, B. Lee, D. Guironnet, Y. Diao, Sci. Adv. 2020, 6(24), eaaz7202.
- 57Y.-L. Li, X. Chen, H.-K. Geng, Y. Dong, B. Wang, Z. Ma, L. Pan, G.-Q. Ma, D.-P. Song, Y.-S. Li, Angew. Chem. Int. Ed. 2021, 60(7), 3647–3653.
- 58W. F. M. Daniel, J. Burdyńska, M. Vatankhah-Varnoosfaderani, K. Matyjaszewski, J. Paturej, M. Rubinstein, A. V. Dobrynin, S. S. Sheiko, Nat. Mater. 2016, 15(2), 183–189.
- 59F. Vashahi, M. R. Martinez, E. Dashtimoghadam, F. Fahimipour, A. N. Keith, E. A. Bersenev, D. A. Ivanov, E. B. Zhulina, P. Popryadukhin, K. Matyjaszewski, et al., Sci. Adv. 2022, 8(3), eabm2469.
- 60X. Lu, T.-H. Tran, F. Jia, X. Tan, S. Davis, S. Krishnan, M. M. Amiji, K. Zhang, J. Am. Chem. Soc. 2015, 137(39), 12466–12469.
- 61C. Hörtz, A. Birke, L. Kaps, S. Decker, E. Wächtersbach, K. Fischer, D. Schuppan, M. Barz, M. Schmidt, Macromolecules 2015, 48(7), 2074–2086.
- 62D. Wang, J. Lin, F. Jia, X. Tan, Y. Wang, X. Sun, X. Cao, F. Che, H. Lu, X. Gao, et al., Sci. Adv. 2019, 5(2), eaav9322.
- 63R. J. Dalal, R. Kumar, M. Ohnsorg, M. Brown, T. M. Reineke, ACS Macro Lett. 2021, 10(7), 886–893.
- 64H. V. T. Nguyen, Y. Jiang, S. Mohapatra, W. Wang, J. C. Barnes, N. J. Oldenhuis, K. K. Chen, S. Axelrod, Z. Huang, Q. Chen, et al., Nat. Chem. 2022, 14(1), 85–93.
- 65A.-C. Lehnen, A. M. Bapolisi, M. Krass, A. AlSawaf, J. Kurki, S. Kersting, H. Fuchs, M. Hartlieb, Biomacromolecules 2022, 23(12), 5350–5360.
- 66V. Blažek Bregović, N. Basarić, K. Mlinarić-Majerski, Coord. Chem. Rev. 2015, 295, 80–124.
- 67J. Geng, K. Kim, J. Zhang, A. Escalada, R. Tunuguntla, L. R. Comolli, F. I. Allen, A. V. Shnyrova, K. R. Cho, D. Munoz, et al., Nature 2014, 514(7524), 612–615.
- 68X. Wu, L. W. Judd, E. N. W. Howe, A. M. Withecombe, V. Soto-Cerrato, H. Li, N. Busschaert, H. Valkenier, R. Pérez-Tomás, D. N. Sheppard, et al., Chem 2016, 1(1), 127–146.
- 69A. M. Maer, R. Rusinova, L. L. Providence, H. I. Ingólfsson, S. A. Collingwood, J. A. Lundbæk, O. S. Andersen, Front. Physiol. 2022, 13.
- 70S. Matile, N. Sakai, A. Hennig, Supramol. Chem. 2012.
- 71J. K. W. Chui, T. M. Fyles, Chem. Soc. Rev. 2012, 41(1), 148–175.
- 72V. Gorteau, G. Bollot, J. Mareda, D. Pasini, D.-H. Tran, A. N. Lazar, A. W. Coleman, N. Sakai, S. Matile, Bioorg. Med. Chem. 2005, 13(17), 5171–5180.
- 73L. Mesarec, M. Fošnarič, S. Penič, V. Kralj Iglič, S. Kralj, W. Góźdź, A. Iglič, Adv. Condens. Matter Phys. 2014, 2014, 373674.
- 74N. Sakai, S. Matile, J. Phys. Org. Chem. 2006, 19(8–9), 452–460.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.