Remarkable Second Harmonic Generation Response in (C5H6NO)+(CH3SO3)−: Unraveling the Role of Hydrogen Bond in Thermal Driven Nonlinear Optical Switch
Zi-Peng Zhang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorXin Liu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorRui-Xi Wang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorDr. Shuang Zhao
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 P. R. China
Search for more papers by this authorWen-Jie He
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorHong-Yu Chen
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorDr. Xue-Bin Deng
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Li-Ming Wu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Zhengyang Zhou
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Ling Chen
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 P. R. China
Search for more papers by this authorZi-Peng Zhang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorXin Liu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorRui-Xi Wang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorDr. Shuang Zhao
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 P. R. China
Search for more papers by this authorWen-Jie He
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorHong-Yu Chen
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorDr. Xue-Bin Deng
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Li-Ming Wu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Zhengyang Zhou
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Ling Chen
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 P. R. China
Search for more papers by this authorAbstract
Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)− due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)−. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408551-sup-0001-misc_information.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Dini, M. J. F. Calvete, M. Hanack, Chem. Rev. 2016, 116, 13043–13233;
- 1bC. Wu, G. Yang, M. G. Humphrey, C. Zhang, Coord. Chem. Rev. 2018, 375, 459–488;
- 1cJ. Dang, D. Mei, Y. Wu, Z. Lin, Coord. Chem. Rev. 2021, 431, 213692.
- 2
- 2aB. Champagne, A. Plaquet, J.-L. Pozzo, V. Rodriguez, F. Castet, J. Am. Chem. Soc. 2012, 134, 8101–8103;
- 2bY. Li, C. Yin, X. Yang, X. Kuang, J. Chen, L. He, Q. Ding, S. Zhao, M. Hong, J. Luo, CCS Chem. 2020, 2, 2298–2306.
- 3
- 3aC.-Y. Pan, X.-R. Yang, L. Xiong, Z.-W. Lu, B.-Y. Zhen, X. Sui, X.-B. Deng, L. Chen, L.-M. Wu, J. Am. Chem. Soc. 2020, 142, 6423–6431;
- 3bV. Aubert, V. Guerchais, E. Ishow, K. Hoang-Thi, I. Ledoux, K. Nakatani, H. L. Bozec, Angew. Chem. Int. Ed. 2008, 47, 577–580; Angew. Chem. 2008, 120, 587–590;
- 3cD. Jiang, Z. Jiang, H. Song, P. Wang, H. Luo, C. Li, K. Liu, T. Wen, W. Yang, Y. Zhao, Y. Wang, Chem. Mater. 2021, 33, 2929–2936.
- 4B. J. Coe, S. Houbrechts, I. Asselberghs, A. Persoons, Angew. Chem. Int. Ed. 1999, 38, 366–369;
10.1002/(SICI)1521-3773(19990201)38:3<366::AID-ANIE366>3.0.CO;2-D CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 377–380.
- 5Z. Sun, T. Chen, C. Ji, S. Zhang, S. Zhao, M. Hong, J. Luo, Chem. Mater. 2015, 27, 4493–4498.
- 6Z. Sun, T. Chen, X. Liu, M. Hong, J. Luo, J. Am. Chem. Soc. 2015, 137, 15660–15663.
- 7D. Wang, Y. Zhang, Q. Shi, Q. Liu, D. Yang, B. Zhang, Y. Wang, Inorg. Chem. Front. 2022, 9, 1708–1713.
- 8F.-J. Geng, L. Zhou, P.-P. Shi, X.-L. Wang, X. Zheng, Y. Zhang, D.-W. Fu, Q. Ye, J. Mater. Chem. C 2017, 5, 1529–1536.
- 9Y.-C. Yang, X. Liu, C.-F. Zhu, L. Zhu, L.-M. Wu, L. Chen, Angew. Chem. Int. Ed. 2023, 62, e202301404; Angew. Chem. 2023, 135, e202301404.
- 10S. Liu, Z. Sun, C. Ji, L. Li, S. Zhao, J. Luo, Chem. Commun. 2017, 53, 7669–7672.
- 11Y. Sui, G.-X. Zhang, W.-Q. Wang, F. Hu, C.-L. Liu, D. Luo, D.-S. Liu, ChemistrySelect 2019, 4, 3921–3925.
- 12Deposition numbers 2340004 (for 4HPMS-RTP), 2340005 (for 4HPMS-HTP) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 13B. Kamb, Acta Crystallogr. 1964, 17, 1437–1449.
- 14X. Chen, Polyhedron 2021, 202, 115191.
- 15J. Wu, Y. Guo, J.-L. Qi, W.-D. Yao, S.-X. Yu, W. Liu, S.-P. Guo, Angew. Chem. Int. Ed. 2023, 62, e202301937; Angew. Chem. 2023, 135, e202301937.
- 16K. Yang, C.-S. Yang, X.-X. Dong, Y.-H. Tan, Y.-Z. Tang, W.-J. Wei, Chem. Eur. J. 2020, 26, 5887–5892.
- 17L.-S. Li, Y.-H. Tan, W.-J. Wei, H.-Q. Gao, Y.-Z. Tang, X.-B. Han, ACS Appl. Mater. Interfaces 2021, 13, 2044–2051.
- 18R.-G. Xiong, S.-Q. Lu, Z.-X. Zhang, H. Cheng, P.-F. Li, W.-Q. Liao, Angew. Chem. Int. Ed. 2020, 59, 9574–9578; Angew. Chem. 2020, 132, 9661–9665.
- 19J. Lu, X. Liu, M. Zhao, X.-B. Deng, K.-X. Shi, Q.-R. Wu, L. Chen, L.-M. Wu, J. Am. Chem. Soc. 2021, 143, 3647–3654.
- 20R. Hou, H. Chen, D. Sun, N. Zhang, C. Shen, D. Wang, Optik 2023, 272, 170301.
- 21M. A. B. Abdallah, S. Kamoun, J. Mol. Struct. 2019, 1178, 52–61.
- 22A. Manikandan, D. Manivannan, M. Dhanalakshmi, L. Guganathan, T. Kokila, M. Santhamoorthy, R. Markkandan, S. C. Kim, C. Balakrishnan, J. Mater. Sci. Mater. Electron. 2022, 33, 7750–7764.
- 23A. M. Preda, P. Kitschke, T. Rüffer, H. Lang, M. Mehring, Z. Anorg. Allg. Chem. 2016, 642, 467–471.
- 24S. K. Kurtz, T. T. Perry, J. Appl. Phys. 1968, 39, 3798–3813.
- 25
- 25aA. Priimagi, K. Ogawa, M. Virkki, J.-I. Mamiya, M. Kauranen, A. Shishido, Adv. Mater. 2012, 24, 6410–6415;
- 25bJ. Boixel, V. Guerchais, H. L. Bozec, D. Jacquemin, A. Amar, A. Boucekkine, A. Colombo, C. Dragonetti, D. Marinotto, D. Roberto, S. Righetto, R. D. Angelis, J. Am. Chem. Soc. 2014, 136, 5367–5375.
- 26B. Zhou, D. Yan, Angew. Chem. Int. Ed. 2019, 58, 15128–15135; Angew. Chem. 2019, 131, 15272–15279.
- 27
- 27aY. Sagara, T. Komatsu, T. Ueno, K. Hanaoka, T. Kato, T. Nagano, Adv. Funct. Mater. 2013, 23, 5277–5284;
- 27bY. Sagara, T. Kato, Angew. Chem. Int. Ed. 2011, 50, 9128–9132; Angew. Chem. Int. Ed. 2011, 123, 9294–9298.
- 28B.-K. An, S.-K. Kwon, S.-D. Jung, S. Y. Park, J. Am. Chem. Soc. 2002, 124, 14410–14415.
- 29N. L. C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam, B. Z. Tang, Chem. Eur. J. 2014, 20, 15349–15353.
- 30R. W. Godby, M. Schlüter, L. J. Sham, Phys. Rev. B 1987, 36, 6497–6500.
- 31L. Kang, F. Liang, X. Jiang, Z. Lin, C. Chen, Acc. Chem. Res. 2020, 53, 209–217.
- 32G. Zhou, J. Xu, X. Chen, H. Zhong, S. Wang, K. Xu, P. Deng, F. Gan, J. Cryst. Growth 1998, 191, 517–519.
- 33M. Liang, Y. Zhang, E. Izvarin, M. J. Waters, J. M. Rondinelli, P. S. Halasyamani, Chem. Mater. 2024, 36, 2113–2123.
- 34H. Tian, Z. Lin, X. Zhao, F. Xu, C. Wang, N. Ye, M. Luo, CCS Chem. 2023, 5, 2497–2505.
- 35D. A. V. Kliner, F. D. Teodoro, J. P. Koplow, S. W. Moore, A. V. Smith, Opt. Commun. 2002, 210, 393–398.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.