Nickel-Catalyzed Electrochemical Cross-Electrophile C(sp2)−C(sp3) Coupling via a NiII Aryl Amido Intermediate
Jian Luo
Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322 United States
Search for more papers by this authorMichael T. Davenport
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604 United States
Search for more papers by this authorCorresponding Author
Dr. Prof. Daniel H. Ess
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604 United States
Search for more papers by this authorCorresponding Author
Dr. Prof. T. Leo Liu
Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322 United States
Search for more papers by this authorJian Luo
Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322 United States
Search for more papers by this authorMichael T. Davenport
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604 United States
Search for more papers by this authorCorresponding Author
Dr. Prof. Daniel H. Ess
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604 United States
Search for more papers by this authorCorresponding Author
Dr. Prof. T. Leo Liu
Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322 United States
Search for more papers by this authorAbstract
Cross-electrophile coupling (XEC) between aryl halides and alkyl halides is a streamlined approach for C(sp2)−C(sp3) bond construction, which is highly valuable in medicinal chemistry. Based on a key NiII aryl amido intermediate, we developed a highly selective and scalable Ni-catalyzed electrochemical XEC reaction between (hetero)aryl halides and primary and secondary alkyl halides. Experimental and computational mechanistic studies indicate that an amine secondary ligand slows down the oxidative addition process of the Ni-polypyridine catalyst to the aryl bromide and a NiII aryl amido intermediate is formed in situ during the reaction process. The relatively slow oxidative addition is beneficial for enhancing the selectivity of the XEC reaction. The NiII aryl amido intermediate stabilizes the NiII–aryl species to prevent the aryl–aryl homo-coupling side reactions and acts as a catalyst to activate the alkyl bromide substrates. This electrosynthesis system provides a facile, practical, and scalable platform for the formation of (hetero)aryl–alkyl bonds using standard Ni catalysts under mild conditions. The mechanistic insights from this work could serve as a great foundation for future studies on Ni-catalyzed cross-couplings.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202407118-sup-0001-misc_information.pdf14.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451–3479;
- 1bA. W. Dombrowski, N. J. Gesmundo, A. L. Aguirre, K. A. Sarris, J. M. Young, A. R. Bogdan, M. C. Martin, S. Gedeon, Y. Wang, ACS Med. Chem. Lett. 2020, 11, 597–604;
- 1cF. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756.
- 2
- 2aJ. B. Diccianni, T. Diao, Trends Chem. 2019, 1, 830–844;
- 2bD. J. Weix, Acc. Chem. Res. 2015, 48, 1767–1775;
- 2cM. J. Goldfogel, L. Huang, D. J. Weix, Nickel Catalysis in Organic Synthesis 2020, pp. 183–222;
10.1002/9783527813827.ch9 Google Scholar
- 2dD. A. Everson, D. J. Weix, J. Org. Chem. 2014, 79, 4793–4798;
- 2eS. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299–309.
- 3
- 3aA. H. Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015, 115, 9587–9652;
- 3bR. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417–1492.
- 4L.-M. Chen, S. E. Reisman, Acc. Chem. Res. 2024, 57, 751–762.
- 5
- 5aP. Zhang, C. C. Le, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138, 8084–8087;
- 5bN. E. S. Tay, D. Lehnherr, T. Rovis, Chem. Rev. 2022, 122, 2487–2649;
- 5cA. Y. Chan, I. B. Perry, N. B. Bissonnette, B. F. Buksh, G. A. Edwards, L. I. Frye, O. L. Garry, M. N. Lavagnino, B. X. Li, Y. Liang, E. Mao, A. Millet, J. V. Oakley, N. L. Reed, H. A. Sakai, C. P. Seath, D. W. C. MacMillan, Chem. Rev. 2022, 122, 1485–1542;
- 5dJ. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Chem. Rev. 2017, 1, 0052.
- 6
- 6aL. Yi, T. Ji, K.-Q. Chen, X.-Y. Chen, M. Rueping, CCS Chem. 2022, 4, 9–30;
- 6bJ. Lu, Y. Wang, T. McCallum, N. Fu, iScience 2020, 23, 101796;
- 6cC. A. Malapit, M. B. Prater, J. R. Cabrera-Pardo, M. Li, T. D. Pham, T. P. McFadden, S. Blank, S. D. Minteer, Chem. Rev. 2022, 122, 3180–3218;
- 6dY. Liu, P. Li, Y. Wang, Y. Qiu, Angew. Chem. Int. Ed. 2023, e202306679.
- 7
- 7aE. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302–308;
- 7bM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
- 7cY. Mo, Z. Lu, G. Rughoobur, P. Patil, N. Gershenfeld, A. I. Akinwande, S. L. Buchwald, K. F. Jensen, Science 2020, 368, 1352–1357.
- 8
- 8aA. Conan, S. Sibille, E. d′Incan, J. Périchon, J. Chem. Soc. Chem. Commun. 1990, 48–49;
- 8bM. Durandetti, J.-Y. Nédélec, J. Périchon, J. Org. Chem. 1996, 61, 1748–1755;
- 8cM. Durandetti, J. Périchon, J.-Y. Nédélec, J. Org. Chem. 1997, 62, 7914–7915.
- 9
- 9aD. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc. 2010, 132, 920–921;
- 9bE. C. Hansen, C. Li, S. Yang, D. Pedro, D. J. Weix, J. Org. Chem. 2017, 82, 7085–7092;
- 9cX. Wang, G. Ma, Y. Peng, C. E. Pitsch, B. J. Moll, T. D. Ly, X. Wang, H. Gong, J. Am. Chem. Soc. 2018, 140, 14490–14497;
- 9dD. A. Everson, B. A. Jones, D. J. Weix, J. Am. Chem. Soc. 2012, 134, 6146–6159.
- 10
- 10aG. L. Beutner, E. M. Simmons, S. Ayers, C. Y. Bemis, M. J. Goldfogel, C. L. Joe, J. Marshall, S. R. Wisniewski, J. Org. Chem. 2021, 86, 10380–10396;
- 10bR. J. Perkins, D. J. Pedro, E. C. Hansen, Org. Lett. 2017, 19, 3755–3758.
- 11J. Luo, B. Hu, W. Wu, M. Hu, T. L. Liu, Angew. Chem. Int. Ed. 2021, 60, 6107–6116.
- 12
- 12aB. L. Truesdell, T. B. Hamby, C. S. Sevov, J. Am. Chem. Soc. 2020, 142, 5884–5893;
- 12bJ. L. S. Zackasee, S. Al Zubaydi, B. L. Truesdell, C. S. Sevov, ACS Catal. 2022, 12, 1161–1166;
- 12cT. B. Hamby, M. J. LaLama, C. S. Sevov, Science 2022, 376, 410–416.
- 13
- 13aR. J. Perkins, A. J. Hughes, D. J. Weix, E. C. Hansen, Org. Process Res. Dev. 2019, 23, 1746–1751;
- 13bM. C. Franke, V. R. Longley, M. Rafiee, S. S. Stahl, E. C. Hansen, D. J. Weix, ACS Catal. 2022, 12, 12617–12626.
- 14J. Twilton, M. R. Johnson, V. Sidana, M. C. Franke, C. Bottecchia, D. Lehnherr, F. Lévesque, S. M. M. Knapp, L. Wang, J. B. Gerken, C. M. Hong, T. P. Vickery, M. D. Weisel, N. A. Strotman, D. J. Weix, T. W. Root, S. S. Stahl, Nature 2023, 623, 71–76.
- 15
- 15aD. Liu, Z.-R. Liu, Z.-H. Wang, C. Ma, S. Herbert, H. Schirok, T.-S. Mei, Nat. Commun. 2022, 13, 7318;
- 15bZ. Zhou, S. Xu, J. Zhang, W. Kong, Org. Chem. Front. 2020, 7, 3262–3265;
- 15cK.-J. Jiao, D. Liu, H.-X. Ma, H. Qiu, P. Fang, T.-S. Mei, Angew. Chem. Int. Ed. 2020, 132, 6520–6524;
- 15dG. S. Kumar, A. Peshkov, A. Brzozowska, P. Nikolaienko, C. Zhu, M. Rueping, Angew. Chem. Int. Ed. 2020, 59, 6513–6519.
- 16J. Luo, M. T. Davenport, A. Carter, D. H. Ess, T. Liu, Faraday Discuss. 2023, 247, 132–142.
- 17
- 17aJ. L. Douthwaite, R. Zhao, E. Shim, B. Mahjour, P. M. Zimmerman, T. Cernak, J. Am. Chem. Soc. 2023, 145, 10930–10937;
- 17bC. N. Prieto Kullmer, J. A. Kautzky, S. W. Krska, T. Nowak, S. D. Dreher, D. W. C. MacMillan, Science 2022, 376, 532–539;
- 17cJ. Wang, L. E. Ehehalt, Z. Huang, O. M. Beleh, I. A. Guzei, D. J. Weix, J. Am. Chem. Soc. 2023, 145, 9951–9958;
- 17dJ. Lu, Y. Yao, L. Li, N. Fu, J. Am. Chem. Soc. 2023, 145, 26774–26782;
- 17eP. Xue, L. Li, N. Fu, Org. Lett. 2022, 24, 7595–7599;
- 17fK. Yang, J. Lu, L. Li, S. Luo, N. Fu, Chem. Eur. J. 2022, 28, e202202370.
- 18J. Luo, M. T. Davenport, C. Callister, S. D. Minteer, D. H. Ess, T. L. Liu, J. Am. Chem. Soc. 2023, 145, 16130–16141.
- 19
- 19aT. Noël, Y. Cao, G. Laudadio, Acc. Chem. Res. 2019, 52, 2858–2869;
- 19bD. Pletcher, R. A. Green, R. C. D. Brown, Chem. Rev. 2018, 118, 4573–4591;
- 19cM. Atobe, H. Tateno, Y. Matsumura, Chem. Rev. 2018, 118, 4541–4572.
- 20C. S. Day, Á. Rentería-Gómez, S. J. Ton, A. R. Gogoi, O. Gutierrez, R. Martin, Nat. Catal. 2023.
- 21Q. Lin, Y. Fu, P. Liu, T. Diao, J. Am. Chem. Soc. 2021, 143, 14196–14206.
- 22V. W. Bowry, J. Lusztyk, K. U. Ingold, J. Am. Chem. Soc. 1991, 113, 5687–5698.
- 23Y. Fu, R.-Q. Li, L. Liu, Q.-X. Guo, Res. Chem. Int. 2004, 30, 279–286.
- 24
- 24aS. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192–16197;
- 24bJ. Breitenfeld, J. Ruiz, M. D. Wodrich, X. Hu, J. Am. Chem. Soc. 2013, 135, 12004–12012.
- 25
- 25aR. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724–728;
- 25bM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01 Gaussian Inc., Wallingford, CT, 2016;
- 25cY. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
- 26J. Luo, M. T. Davenport, D. H. Ess, T. L. Liu, Angew. Chem. Int. Ed. 2023, e202403844.
- 27A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- 28P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.
- 29M. Namazian, C. Y. Lin, M. L. Coote, J. Chem. Theory Comput. 2010, 6, 2721–2725.
- 30M. Yuan, Z. Song, S. O. Badir, G. A. Molander, O. Gutierrez, J. Am. Chem. Soc. 2020, 142, 7225–7234.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.