Organolanthanide Single-Molecule Magnets with Heterocyclic Ligands
Yidian Wang
School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 P. R. China
Search for more papers by this authorQian-Cheng Luo
School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yan-Zhen Zheng
School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 P. R. China
Search for more papers by this authorYidian Wang
School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 P. R. China
Search for more papers by this authorQian-Cheng Luo
School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yan-Zhen Zheng
School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054 P. R. China
Search for more papers by this authorAbstract
Lanthanide (Ln) based mononuclear single-molecule magnets (SMMs) provide probably the finest ligand regulation model for magnetic property. Recently, the development of such SMMs has witnessed a fast transition from coordination to organometallic complexes because the latter provides a fertile, yet not fully excavated soil for the development of SMMs. Especially those SMMs with heterocyclic ligands have shown the potential to reach higher blocking temperature. In this minireview, we give an overview of the design principle of SMMs and highlight those “shining stars” of heterocyclic organolanthanide SMMs based on the ring sizes of ligands, analysing how the electronic structures of those ligands and the stiffness of subsequently formed molecules affect the dynamic magnetism of SMMs. Finally, we envisaged the future development of heterocyclic Ln-SMMs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1R. Sessoli, Nature 2017, 548, 400–401.
- 2S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 2014, 344, 1135–1138.
- 3N. F. Chilton, Annu. Rev. Mater. Res. 2022, 52, 79–101.
- 4H.-D. Li, S.-G. Wu, M.-L. Tong, Chem. Commun. 2023, 59, 6159–6170.
- 5Z. Zhu, J. Tang, Chem. Soc. Rev. 2022, 51, 9469–9481.
- 6R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141–143.
- 7E. Ruiz, J. Cirera, J. Cano, S. Alvarez, C. Loose, J. Kortus, Chem. Commun. 2007, 52–54.
- 8J. Cirera, E. Ruiz, S. Alvarez, F. Neese, J. Kortus, Chem. Eur. J. 2009, 15, 4078–4087.
- 9N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694–8695.
- 10J. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078.
- 11H. Schilder, H. Lueken, J. Magn. Magn. Mater. 2004, 281, 17–26.
- 12N. Ishikawa, J. Phys. Chem. A 2003, 107, 5831–5835.
- 13T. Han, Y.-S. Ding, J.-D. Leng, Z. Zheng, Y.-Z. Zheng, Inorg. Chem. 2015, 54, 4588–4590.
- 14R. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E. J. L. McInnes, L. F. Chibotaru, R. E. P. Winpenny, Nat. Chem. 2013, 5, 673–678.
- 15A. Lunghi, S. Sanvito, Nat. Rev. Chem. 2022, 6, 761–781.
- 16A. Lunghi, in Computational Modelling of Molecular Nanomagnets (Ed.: G. Rajaraman), Springer International Publishing, Cham 2023, pp. 219–289.
10.1007/978-3-031-31038-6_6 Google Scholar
- 17Q.-C. Luo, Y.-Z. Zheng, Trends Chem. 2023, 5, 869–872.
- 18A. Castro-Alvarez, Y. Gil, L. Llanos, D. Aravena, Inorg. Chem. Front. 2020, 7, 2478–2486.
- 19Z. Zhu, J. Tang, in Organometallic Magnets (Eds.: V. Chandrasekhar, F. Pointillart), Springer International Publishing, Cham 2019, pp. 191–226.
- 20B. M. Day, F.-S. Guo, R. A. Layfield, Acc. Chem. Res. 2018, 51, 1880–1889.
- 21M. J. Heras Ojea, L. C. H. Maddock, R. A. Layfield, in Organometallic Magnets (Eds.: V. Chandrasekhar, F. Pointillart), Springer, Cham 2019, pp. 253–280.
10.1007/3418_2019_26 Google Scholar
- 22Y.-S. Ding, N. F. Chilton, R. E. P. Winpenny, Y.-Z. Zheng, Angew. Chem. Int. Ed. 2016, 128, 16305–16308.
- 23W. Xu, Q. Luo, Z. Li, Y. Zhai, Y. Zheng, Adv. Sci. 2024, 11, 2308548.
- 24F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Science 2018, 362, 1400–1403.
- 25J. P. Durrant, B. M. Day, J. Tang, A. Mansikkamäki, R. A. Layfield, Angew. Chem. Int. Ed. 2022, 61, e202200525.
- 26Y. Wang, Q.-C. Luo, Y.-Q. Zhai, P.-B. Jin, Z. Fu, Q. Sun, F.-N. Li, Y.-Z. Zheng, Cryst. Growth Des. 2022, 22, 6398–6404.
- 27F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Angew. Chem. Int. Ed. 2017, 56, 11445–11449.
- 28C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, D. P. Mills, Nature2017, 548, 439–442.
- 29K. Randall McClain, C. A. Gould, K. Chakarawet, S. J. Teat, T. J. Groshens, J. R. Long, B. G. Harvey, Chem. Sci. 2018, 9, 8492–8503.
- 30J. G. C. Kragskow, A. Mattioni, J. K. Staab, D. Reta, J. M. Skelton, N. F. Chilton, Chem. Soc. Rev. 2023, 52, 4567–4585.
- 31D. Reta, J. G. C. Kragskow, N. F. Chilton, J. Am. Chem. Soc. 2021, 143, 5943–5950.
- 32K. Bernot, Eur. J. Inorg. Chem. 2023, 26, e202300336.
- 33R. A. Layfield, Organometallics 2014, 33, 1084–1099.
- 34K. L. M. Harriman, M. Murugesu, Acc. Chem. Res. 2016, 49, 1158–1167.
- 35F. Ortu, D. P. Mills, in Handbook on the Physics and Chemistry of Rare Earths (Eds.: J.-C. G. Bünzli, V. K. Pecharsky), Elsevier 2019, pp. 1–87.
- 36F. T. Edelmann, Coord. Chem. Rev. 2016, 318, 29–130.
- 37F. T. Edelmann, Coord. Chem. Rev. 2018, 370, 129–223.
- 38F.-S. Guo, A. K. Bar, R. A. Layfield, Chem. Rev. 2019, 119, 8479–8505.
- 39C. A. Gould, K. R. McClain, D. Reta, J. G. C. Kragskow, D. A. Marchiori, E. Lachman, E.-S. Choi, J. G. Analytis, R. D. Britt, N. F. Chilton, B. G. Harvey, J. R. Long, Science 2022, 375, 198–202.
- 40C. A. Gould, E. Mu, V. Vieru, L. E. Darago, K. Chakarawet, M. I. Gonzalez, S. Demir, J. R. Long, J. Am. Chem. Soc. 2020, 142, 21197–21209.
- 41J. C. Vanjak, B. O. Wilkins, V. Vieru, N. S. Bhuvanesh, J. H. Reibenspies, C. D. Martin, L. F. Chibotaru, M. Nippe, J. Am. Chem. Soc. 2022, 144, 17743–17747.
- 42R. Collins, J. P. Durrant, M. He, R. A. Layfield, in Handbook on the Physics and Chemistry of Rare Earths (Eds.: J.-C. G. Bünzli, V. K. Pecharsky), Elsevier 2019, pp. 89–121.
- 43R. A. Layfield, J. J. W. McDouall, S. A. Sulway, F. Tuna, D. Collison, R. E. P. Winpenny, Chem. Eur. J. 2010, 16, 4442–4446.
- 44S.-D. Jiang, B.-W. Wang, H.-L. Sun, Z.-M. Wang, S. Gao, J. Am. Chem. Soc. 2011, 133, 4730–4733.
- 45D. S. Krylov, F. Liu, S. M. Avdoshenko, L. Spree, B. Weise, A. Waske, A. U. B. Wolter, B. Büchner, A. A. Popov, Chem. Commun. 2017, 53, 7901–7904.
- 46C. A. Gould, K. R. McClain, J. M. Yu, T. J. Groshens, F. Furche, B. G. Harvey, J. R. Long, J. Am. Chem. Soc. 2019, 141, 12967–12973.
- 47P.-B. Jin, Y.-Q. Zhai, K.-X. Yu, R. E. P. Winpenny, Y.-Z. Zheng, Angew. Chem. Int. Ed. 2020, 59, 9350–9354.
- 48P.-B. Jin, K.-X. Yu, Q.-C. Luo, Y.-Y. Liu, Y.-Q. Zhai, Y.-Z. Zheng, Angew. Chem. Int. Ed. 2022, 61, e202203285.
- 49A. H. Vincent, Y. L. Whyatt, N. F. Chilton, J. R. Long, J. Am. Chem. Soc. 2023, 145, 1572–1579.
- 50K. Kotrle, R. Herchel, Inorg. Chem. 2019, 58, 14046–14057.
- 51Y.-S. Meng, C.-H. Wang, Y.-Q. Zhang, X.-B. Leng, B.-W. Wang, Y.-F. Chen, S. Gao, Inorg. Chem. Front. 2016, 3, 828–835.
- 52D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110–5148.
- 53J. Alvarez-Builla, J. J. Vaquero, J. Barluenga, Eds., Modern Heterocyclic Chemistry, Wiley-VCH, Weinheim 2011.
- 54C. Uhlmann, L. Münzfeld, A. Hauser, T. Ruan, S. Kumar Kuppusamy, C. Jin, M. Ruben, K. Fink, E. Moreno-Pineda, P. W. Roesky, Angew. Chem. Int. Ed. 2024, 136, e202401372.
- 55M. Briganti, F. Santanni, L. Tesi, F. Totti, R. Sessoli, A. Lunghi, J. Am. Chem. Soc. 2021, 143, 13633–13645.
- 56M. Briganti, G. F. Garcia, J. Jung, R. Sessoli, B. L. Guennic, F. Totti, Chem. Sci. 2019, 10, 7233–7245.
- 57E. L. Roux, F. Nief, F. Jaroschik, K. W. Törnroos, R. Anwander, Dalton Trans. 2007, 4866–4870.
- 58P. Evans, D. Reta, G. F. S. Whitehead, N. F. Chilton, D. P. Mills, J. Am. Chem. Soc. 2019, 141, 19935–19940.
- 59S. De, A. Mondal, Z.-Y. Ruan, M.-L. Tong, R. A. Layfield, Chem. Eur. J. 2023, 29, e202300567.
- 60L. Münzfeld, X. Sun, S. Schlittenhardt, C. Schoo, A. Hauser, S. Gillhuber, F. Weigend, M. Ruben, P. W. Roesky, Chem. Sci. 2022, 13, 945–954.
- 61J.-L. Liu, Y.-C. Chen, M.-L. Tong, Chem. Soc. Rev. 2018, 47, 2431–2453.
- 62S. Sottini, G. Poneti, S. Ciattini, N. Levesanos, E. Ferentinos, J. Krzystek, L. Sorace, P. Kyritsis, Inorg. Chem. 2016, 55, 9537–9548.
- 63S. T. Liddle, J. van Slageren, Chem. Soc. Rev. 2015, 44, 6655–6669.
- 64P.-B. Jin, Q.-C. Luo, Y.-Q. Zhai, Y.-D. Wang, Y. Ma, L. Tian, X. Zhang, C. Ke, X.-F. Zhang, Y. Lv, Y.-Z. Zheng, iScience 2021, 24, 102760.
- 65F.-S. Guo, M. He, G.-Z. Huang, S. R. Giblin, D. Billington, F. W. Heinemann, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Inorg. Chem. 2022, 61, 6017–6025.
- 66S.-M. Chen, J. Xiong, Y.-Q. Zhang, Q. Yuan, B.-W. Wang, S. Gao, Chem. Sci. 2018, 9, 7540–7545.
- 67S. De, A. Mondal, S. R. Giblin, R. A. Layfield, Angew. Chem. Int. Ed. 2024, 136, e202317678.
- 68I. Rozas, I. Alkorta, J. Elguero, J. Phys. Chem. A 1997, 101, 4236–4244.
- 69J. Wang, Q.-W. Li, S.-G. Wu, Y.-C. Chen, R.-C. Wan, G.-Z. Huang, Y. Liu, J.-L. Liu, D. Reta, M. J. Giansiracusa, Z.-X. Wang, N. F. Chilton, M.-L. Tong, Angew. Chem. Int. Ed. 2021, 133, 5359–5366.
- 70T. Han, M. J. Giansiracusa, Z.-H. Li, Y.-S. Ding, N. F. Chilton, R. E. P. Winpenny, Y.-Z. Zheng, Chem. Eur. J. 2020, 26, 6773–6777.
- 71Y.-S. Meng, J. Xiong, M.-W. Yang, Y.-S. Qiao, Z.-Q. Zhong, H.-L. Sun, J.-B. Han, T. Liu, B.-W. Wang, S. Gao, Angew. Chem. Int. Ed. 2020, 59, 13037–13043.
- 72T. P. Latendresse, V. Vieru, B. O. Wilkins, N. S. Bhuvanesh, L. F. Chibotaru, M. Nippe, Angew. Chem. Int. Ed. 2018, 57, 8164–8169.
- 73H. Schumann, E. C. E. Rosenthal, J. Winterfeld, R. Weimann, J. Demtschuk, J. Organomet. Chem. 1996, 507, 287–289.
- 74F. Nief, D. Turcitu, L. Ricard, Chem. Commun. 2002, 1646–1647.
- 75V. Lyaskovskyy, N. Elders, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, J. Am. Chem. Soc. 2011, 133, 9704–9707.
- 76M. Ledermann, M. Regitz, K. Angermund, P. Binger, C. Krüger, R. Mynott, R. Gleiter, I. Hyla-Kryspin, Angew. Chem. Int. Ed. Engl. 1988, 27, 1559–1562.
- 77Y. Kon, K. Sakamoto, C. Kabuto, M. Kira, Organometallics 2005, 24, 1407–1409.
- 78In The Chemistry of Heterocycles, John Wiley & Sons, Ltd 2003, pp. 480–495.
- 79K. Chui, Q. Yang, T. C. W. Mak, W. H. Lam, Z. Lin, Z. Xie, J. Am. Chem. Soc. 2000, 122, 5758–5764.
- 80Y.-S. Meng, S.-D. Jiang, B.-W. Wang, S. Gao, Acc. Chem. Res. 2016, 49, 2381–2389.
- 81M. Tricoire, L. Münzfeld, J. Moutet, N. Mahieu, L. La Droitte, E. Moreno-Pineda, F. Gendron, J. D. Hilgar, J. D. Rinehart, M. Ruben, B. Le Guennic, O. Cador, P. W. Roesky, G. Nocton, Chem. Eur. J. 2021, 27, 13558–13567.
- 82Y.-S. Meng, Y.-S. Qiao, Y.-Q. Zhang, S.-D. Jiang, Z.-S. Meng, B.-W. Wang, Z.-M. Wang, S. Gao, Chem. Eur. J. 2016, 22, 4704–4708.
- 83L. Münzfeld, C. Schoo, S. Bestgen, E. Moreno-Pineda, R. Köppe, M. Ruben, P. W. Roesky, Nat. Commun. 2019, 10, 3135.
- 84P. Pyykkö, Phys. Scr. 1979, 20, 647–651.
- 85Y. Tang, S. Zhao, B. Long, J.-C. Liu, J. Li, J. Phys. Chem. C 2016, 120, 17514–17526.
- 86M. Kaupp, J. Comput. Chem. 2007, 28, 320–325.
- 87W.-L. Li, H.-S. Hu, Y.-F. Zhao, X. Chen, T.-T. Chen, T. Jian, L.-S. Wang, J. Li, SCI. SIN. Chim. 2018, 48, 98–107.
10.1360/N032017-00185 Google Scholar
- 88M. Joost, M. Nieger, M. Lutz, A. W. Ehlers, J. C. Slootweg, K. Lammertsma, Organometallics 2020, 39, 1762–1771.
- 89A. L. Zinnatullin, A. A. Zagidullin, L. I. Savostina, I. A. Bezkishko, A. V. Petrov, E. N. Dulov, R. R. Zairov, V. A. Miluykov, F. G. Vagizov, Organometallics 2023, 42, 1538–1549.
- 90W.-L. Li, T.-T. Chen, W.-J. Chen, J. Li, L.-S. Wang, Nat. Commun. 2021, 12, 6467.
- 91F.-H. Wang, S.-Q. She, Y. Tao, X.-R. Wang, C.-H. Chu, H. Zhou, Q.-H. Li, J. Mol. Struct. 2022, 1248, 131475.
- 92X. Sun, L. Münzfeld, D. Jin, A. Hauser, P. W. Roesky, Chem. Commun. 2022, 58, 7976–7979.
- 93J. Liu, K. Singh, S. Dutta, Z. Feng, D. Koley, G. Tan, X. Wang, Dalton Trans. 2021, 50, 5552–5556.
- 94Y. Nie, H. Wadepohl, C. Hu, T. Oeser, W. Siebert, J. Organomet. Chem. 2009, 694, 1884–1889.
- 95B.-K. Ling, Y.-Q. Zhai, P.-B. Jin, H.-F. Ding, X.-F. Zhang, Y. Lv, Z. Fu, J. Deng, M. Schulze, W. Wernsdorfer, Y.-Z. Zheng, Matter 2022, 5, 3485–3498.
- 96W. J. Evans, in Advances in Organometallic Chemistry (Eds.: F. G. A. Stone, R. West), Academic Press 1985, pp. 131–177.
10.1016/S0065-3055(08)60415-3 Google Scholar
- 97D. M. Anderson, F. G. N. Cloke, P. A. Cox, N. Edelstein, J. C. Green, T. Pang, A. A. Sameh, G. Shalimoff, J. Chem. Soc. Chem. Commun. 1989, 53–55.
- 98S. Schäfer, S. Kaufmann, E. S. Rösch, P. W. Roesky, Chem. Soc. Rev. 2023, 52, 4006–4045.
- 99A. P. Orlova, M. S. Varley, M. G. Bernbeck, K. M. Kirkpatrick, P. C. Bunting, M. Gembicky, J. D. Rinehart, J. Am. Chem. Soc. 2023, 145, 22265–22275.
- 100D. J. Tranchemontagne, Z. Ni, M. O'Keeffe, O. M. Yaghi, Angew. Chem. Int. Ed. 2008, 47, 5136–5147.
- 101D. Braga, Chem. Commun. 2023, 59, 14052–14062.
- 102C. Wäckerlin, F. Donati, A. Singha, R. Baltic, S. Rusponi, K. Diller, F. Patthey, M. Pivetta, Y. Lan, S. Klyatskaya, M. Ruben, H. Brune, J. Dreiser, Adv. Mater. 2016, 28, 5195–5199.
- 103J. Hou, D. Li, L. Norel, S. Rigaut, Z. Wang, L. Shan, T. Komeda, J. Mater. Chem. C 2023, 11, 16933–16940.
- 104V. Romankov, M. Bernhardt, M. Heinrich, D. Vaclavkova, K. Harriman, N. Daffé, B. Delley, M. D. Korzyński, M. Muntwiler, C. Copéret, M. Murugesu, F. Nolting, J. Dreiser, Small Sci. 2024, 4, 2400115.
- 105G. E. Johnson, Q. Hu, J. Laskin, Annu. Rev. Anal. Chem. 2011, 4, 83–104.
- 106M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M.-A. Arrio, A. Cornia, D. Gatteschi, R. Sessoli, Nat. Mater. 2009, 8, 194–197.
- 107P. L. Arnold, F. G. N. Cloke, P. B. Hitchcock, Chem. Commun. 1997, 481–482.
- 108M. Briganti, G. Serrano, L. Poggini, A. L. Sorrentino, B. Cortigiani, L. C. de Camargo, J. F. Soares, A. Motta, A. Caneschi, M. Mannini, F. Totti, R. Sessoli, Nano Lett. 2022, 22, 8626–8632.
- 109G. Czap, P. J. Wagner, F. Xue, L. Gu, J. Li, J. Yao, R. Wu, W. Ho, Science 2019, 364, 670–673.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.