Unlocking Fast Potassium Ion Kinetics: High-Rate and Long-Life Potassium Dual-Ion Battery for Operation at −60 °C
Yang Xia
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorDr. Fuda Yu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorDan Nie
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071 China
Search for more papers by this authorYunshan Jiang
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorMeiyan Sun
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Dr. Lanfang Que
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Dr. Liang Deng
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Dr. Lei Zhao
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Dr. Qianyu Zhang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Zhenbo Wang
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071 China
Search for more papers by this authorYang Xia
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorDr. Fuda Yu
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorDan Nie
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071 China
Search for more papers by this authorYunshan Jiang
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorMeiyan Sun
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Dr. Lanfang Que
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Dr. Liang Deng
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Dr. Lei Zhao
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Dr. Qianyu Zhang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Zhenbo Wang
State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071 China
Search for more papers by this authorAbstract
Energy storage devices operating at low temperatures are plagued by sluggish kinetics, reduced capacity, and notorious dendritic growth. Herein, novel potassium dual-ion batteries (PDIBs) capable of superior performance at −60 °C, and fabricated by combining MXenes and polytriphenylamine (PTPAn) as the anode and cathode, respectively, are presented. Additionally, the reason for the anomalous kinetics of K+ (faster at low temperature than at room temperature) on the Ti3C2 anode is investigated. Theoretical calculations, crossover experiments, and in situ XRD at room and low temperatures revealed that K+ tends to bind with solvent molecules rather than anions at subzero temperatures, which not only inhibits the participation of PF6− in the formation of the solid electrolyte interphase (SEI), but also guarantees co-intercalation behavior and suppresses undesirable K+ storage. The advantageous properties at low temperatures endow the Ti3C2 anode with fast K+ kinetics to unlock the outstanding performance of PDIB at ultralow temperatures. The PDIBs exhibit superior rate capability and high capacity retention at −40 °C and −60 °C. Impressively, after charging-discharging for 20,000 cycles at −60 °C, the PDIB retained 86.7 % of its initial capacity. This study reveals the influence of temperatures on MXenes and offers a unique design for dual-ion batteries operating at ultralow temperatures.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406765-sup-0001-misc_information.pdf3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Piao, X. N. Gao, H. C. Yang, Z. Q. Guo, G. J. Hu, H. M. Cheng, F. Li, eTransportation. 2022, 11, 100145.
- 2Y. Sun, J. C. Li, H. S. Zhou, S. H. Guo, Energy Environ. Sci. 2023, 16, 4759–4811.
- 3M. Y. Tang, S. Dong, J. W. Wang, L. W. Cheng, Q. N. Zhu, Y. M. Li, X. Y. Yang, L. Guo, H. Wang, Nat. Commun. 2023, 14, 6006.
- 4J. Holoubek, H. D. Liu, Z. H. Wu, Y. J. Yin, X. Xing, G. R. Cai, S. C. Yu, H. Y. Zhou, T. A. Pascal, Z. Chen, P. Liu, Nat. Energy. 2021, 6, 303–313.
- 5M. W. Zhang, R. L. Liang, N. Yang, R. Gao, Y. Zheng, Y. P. Deng, Y. F. Hu, A. P. Yu, Z. W. Chen, Adv. Energy Mater. 2021, 12, 2102493.
- 6Y. J. Liu, X. Hu, J. W. Li, G. B. Zhong, J. Yuan, H. B. Zhan, Y. B. Tang, Z. H. Wen, Nat. Commun. 2022, 13, 663.
- 7F. D. Yu, L. F. Que, J. H. Wu, Z. Lan, L. Q. Fan, Z. B. Wang, Energy Storage Mater. 2022, 53, 890–898.
- 8X. L. Zhang, Y. B. Tang, F. Zhang, C. S. Lee, Adv. Energy Mater. 2016, 6, 1502588.
- 9J. Holoubek, Y. J. Yin, M. Q. Li, M. Y. Yu, Y. S. Meng, P. Liu, Z. Chen, Angew. Chem. Int. Ed. 2019, 58, 18892–18897.
- 10J. Ding, W. B. Hu, E. Paek, D. Mitlin, Chem. Rev. 2018, 118, 6457–6498.
- 11E. Goikolea, V. Palomares, S. J. Wang, I. R. de Larramendi, X. Guo, G. X. Wang, T. Rojo, Adv. Energy Mater. 2020, 10, 2002055.
- 12X. L. Zhou, Q. R. Liu, C. L. Jiang, B. F. Ji, X. L. Ji, Y. B. Tang, H. M. Cheng, Angew. Chem. Int. Ed. 2019, 59, 3802–3832.
- 13K. V. Kravchyk, P. Bhauriyal, L. Piveteau, C. P. Guntlin, B. Pathak, M. V. Kovalenko, Nat. Commun. 2018, 9, 4469.
- 14Z. Cao, X. Y. Zheng, M. Zhou, T. Zhao, L. Z. Lv, Y. C. Li, Z. Q. Wang, W. Luo, H. H. Zheng, ACS Energy Lett. 2022, 7, 3581–3592.
- 15L. Deng, K. Goh, F. D. Yu, Y. Xia, Y. S. Jiang, W. Ke, Y. Han, L. F. Que, J. Zhou, Z. B. Wang, Energy Storage Mater. 2022, 44, 82–92.
- 16X. Gao, X. Du, T. S. Mathis, M. M. Zhang, X. H. Wang, J. L. Shui, Y. Gogotsi, M. Xu, Nat. Commun. 2020, 11, 6160.
- 17X. L. Dong, Z. W. Guo, Z. Y. Guo, Y. G. Wang, Y. Y. Xia, Joule. 2018, 2, 902–913.
- 18J. W. Chen, Y. Peng, Y. Yin, Z. Fang, Y. J. Cao, Y. G. Wang, X. L. Dong, Y. Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 23858–23862.
- 19T. Hosaka, K. Kubota, A. S. Hameed, S. Komaba, Chem. Rev. 2020, 120, 6358–6466.
- 20K. Beltrop, S. Beuker, A. Heckmann, M. Winter, T. Placke, Energy Environ. Sci. 2017, 10, 2090–2094.
- 21J. C. Chen, D. An, S. C. Wang, H. Wang, Y. Y. Wang, Q. N. Zhu, D. D. Yu, M. Y. Tang, L. Guo, H. Wang, Angew. Chem. Int. Ed. 2023, 62, 2307122.
- 22R. C. Cui, H. Y. Zhou, J. C. Li, C. C. Yang, Q. Jiang, Adv. Funct. Mater. 2021, 31, 2103067.
- 23I. Sultana, T. Ramireddy, M. M. Rahman, Y. Chen, A. M. Glushenkov, Chem. Commun. 2016, 52, 9279–9282.
- 24X. F. Ge, S. H. Liu, M. Qiao, Y. C. Du, Y. F. Li, J. C. Bao, X. S. Zhou, Angew. Chem. Int. Ed. 2019, 58, 14578–14583.
- 25M. Ma, S. K. Chong, K. Yao, H. K. Liu, S. X. Dou, W. Huang, Matter. 2023, 6, 3220–3273.
- 26D. Sabaghi, J. Poľcák, H. Yang, X. D. Li, A. Morag, D. Q. Li, A. S. Nia, S. Khosravi, H. T. Šikola, X. L. Feng, M. H. Yu, Adv. Energy Mater. 2024, 14, 2302961.
- 27L. F. Que, J. H. Wu, Z. Lan, Y. M. Xie, F. D. Yu, Z. B. Wang, J. S. Shen, X. C. Zhang, Adv. Mater. 2023, 35, 2307582.
- 28D. Q. Er, J. W. Li, M. Naguib, Y. Gogotsi, V. B. Shenoy, ACS Appl. Mater. Interfaces. 2014, 6, 11173–11179.
- 29J. Wen, Q. S. Fu, W. Y. Wu, H. Gao, X. T. Zhang, B. Wang, ACS Appl. Mater. Interfaces. 2019, 11, 7087–7095.
- 30C. X. Lv, W. J. Xu, H. L. Liu, L. X. Zhang, S. Chen, X. F. Yang, X. J. Xu, D. J. Yang, Small. 2019, 15, 1900816.
- 31Y. Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan, G. L. Wang, D. X. Cao, Adv. Funct. Mater. 2020, 30, 2005663.
- 32Y. Y. Zhao, G. S. Dong, M. Zhang, D. S. Wang, Y. J. Chen, D. X. Cao, K. Zhu, G. H. Chen, 2D Mater. 2022, 10, 014005.
- 33S. Q. Zhao, Z. C. Liu, G. S. Xie, X. Guo, Z. Q. Guo, F. Song, G. H. Li, C. Chen, X. Q. Xie, N. Zhang, B. Sun, S. J. Guo, G. X. Wang, Angew. Chem. Int. Ed. 2021, 60, 26246–26253.
- 34D. Hubble, D. E. Brown, Y. Z. Zhao, C. Fang, J. Lau, B. D. McCloskey, G. Liu, Energy Environ. Sci. 2022, 15, 550–578.
- 35M. Petzl, M. Kasper, M. A. Danzer, J. Power Sources. 2015, 275, 799–807.
- 36X. H. Wang, T. S. Mathis, K. Li, Z. F. Lin, L. Vlcek, T. Torita, N. C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, Y. Gogotsi, Nat. Energy. 2019, 4, 241–248.
- 37V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518–522.
- 38J. F. Li, Y. Y. Hu, H. B. Xie, J. Peng, L. Fan, J. Zhou, B. A. Lu, Angew. Chem. Int. Ed. 2022, 61, 2208291.
- 39S. Ardhra, P. Prakash, R. Siva Dev, A. Venkatnathan, J. Phys. Chem. B. 2022, 126, 2119–2129.
- 40J. T. Hu, Y. C. Ji, G. R. Zheng, W. Y. Huang, Y. Lin, L. Y. Yang, F. Pan, Aggregate. 2022, 3, e153.
- 41J. X. Wang, G. F. Li, Q. Wang, L. Huang, X. T. Gan, M. L. Li, Z. P. Song, Energy Storage Mater. 2023, 63, 102956.
- 42W. Q. Fang, Z. X. Wen, L. Chen, Z. Y. Qin, J. Q. Li, Z. C. Zheng, Z. Weng, G. Wu, N. Zhang, X. H. Liu, X. M. Yuan, G. Chen, Nano Energy. 2022, 104, 107881.
- 43S. T. Weng, X. Zhang, G. J. Yang, S. M. Zhang, B. Y. Ma, Q. Y. Liu, Y. Liu, C. X. Peng, H. X. Chen, H. L. Yu, X. L. Fan, T. Cheng, L. Q. Chen, Y. J. Li, Z. X. Wang, X. F. Wang, Nat. Commun. 2023, 14, 4474.
- 44Z. Tang, H. Wang, P. F. Wu, S. Y. Zhou, Y. C. Huang, R. Zhang, D. Sun, Y. G. Tang, H. Y. Wang, Angew. Chem. Int. Ed. 2022, 60, 2200475.
- 45K. K. Li, J. Zhang, D. M. Lin, D. W. Wang, B. H. Li, W. Lv, S. Sun, Y. B. He, F. Y. Kang, Q. H. Yang, L. M. Zhou, T. Y. Zhang, Nat. Commun. 2019, 10, 725.
- 46R. T. Zheng, H. X. Yu, X. K. Zhang, Y. Ding, M. T. Xia, K. Z. Cao, J. Shu, A. Vlad, B. L. Su, Angew. Chem. Int. Ed. 2021, 60, 18430–18437.
- 47S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, ACS Nano. 2016, 10, 3334–3341.
- 48P. C. Lian, Y. F. Dong, Z. S. Wu, S. H. Zheng, X. H. Wang, S. Wang, C. L. Sun, J. Q. Qin, X. Y. Shi, X. H. Bao, Nano Energy. 2017, 40, 1–8.
- 49Y. Xia, L. F. Que, F. D. Yu, L. Deng, Z. J. Liang, Y. S. Jiang, M. Y. Sun, L. Zhao, Z. B. Wang, Nano-Micro Lett. 2022, 14, 143.
- 50Z. Li, Y. Zhang, J. H. Zhang, Y. J. Cao, J. W. Chen, H. M. Liu, Y. G. Wang, Angew. Chem. Int. Ed. 2022, 61, 2116930.
- 51X. H. Rui, X. H. Zhang, S. T. Xu, H. T. Tan, Y. Jiang, L. Y. Gan, Y. Z. Feng, C. C. Li, Y. Yu, Adv. Funct. Mater. 2020, 31, 2009458.
- 52R. Xu, S. Zhang, X. Shen, N. Yao, J. F. Ding, Y. Xiao, L. Xu, C. Yan, J. Q. Huang, Small Structures. 2023, 4, 2200400.
- 53Y. F. Huang, R. Ding, D. F. Ying, T. Yan, Y. X. Huang, C. N. Tan, X. J. Sun, P. Gao, E. H. Liu, Chem. Eur. J. 2021, 27, 9954–9960.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.