A Conductive Binder Based on Mesoscopic Interpenetration with Polysulfides Capturing Skeleton and Redox Intermediates Network for Lithium Sulfur Batteries
Dr. Wenqiang Wang
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Funding acquisition (equal), Writing - original draft (lead)
Search for more papers by this authorMs. Lan Hua
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
These authors contributed equally to this work.
Contribution: Investigation (lead), Methodology (lead)
Search for more papers by this authorMr. Yifan Zhang
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
Contribution: Software (lead), Visualization (supporting)
Search for more papers by this authorCorresponding Author
Prof. Gengchao Wang
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
Contribution: Conceptualization (equal), Funding acquisition (equal), Project administration (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Chunzhong Li
Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
Contribution: Project administration (equal)
Search for more papers by this authorDr. Wenqiang Wang
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Funding acquisition (equal), Writing - original draft (lead)
Search for more papers by this authorMs. Lan Hua
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
These authors contributed equally to this work.
Contribution: Investigation (lead), Methodology (lead)
Search for more papers by this authorMr. Yifan Zhang
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
Contribution: Software (lead), Visualization (supporting)
Search for more papers by this authorCorresponding Author
Prof. Gengchao Wang
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
Contribution: Conceptualization (equal), Funding acquisition (equal), Project administration (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Chunzhong Li
Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
Contribution: Project administration (equal)
Search for more papers by this authorAbstract
The practical application of lithium-sulfur batteries with high theoretical energy density and readily available cathode active materials is hampered by problems such as sulfur insulation, dramatic volume changes, and polysulfide shuttling. The targeted development of novel binders is the most industrialized solution to the problem of sulfur cathodes. Herein, an aqueous conductive emulsion binder with the sulfonate-containing hard elastic copolymer core and the conjugate polymer shell, which is capable of forming a bicontinuous mesoscopic interpenetrating polymer network, is synthesized and investigated. Not only can the elastic skeleton formed by the copolymer bind the active substance under drastic volume changes, but also the rich ester and cyanide groups in it can effectively capture lithium polysulfide. Meanwhile, the conducting skeleton consisting of poly(3,4-ethylenedioxythiophene) both provides the additional charge conduction pathways and acts as the redox intermediates, significantly accelerating the kinetic process of lithium polysulfide conversion. Based on the synergistic effect of the above mechanisms, the use of the prepared binder on the sulfur carbon cathode significantly improves the rate performance and cycle stability of lithium sulfur batteries.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202405920-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Robert, Science 2018, 359(6380), 1080–1081.
- 2S. Zhou, J. Shi, S. Liu, G. Li, F. Pei, Y. Chen, J. Deng, Q. Zheng, J. Li, C. Zhao, I. Hwang, C.-J. Sun, Y. Liu, Y. Deng, L. Huang, Y. Qiao, G. Xu, J. Chen, K. Amine, S. Sun, H. Liao, Nature 2023, 621(7977), 75–81.
- 3Y. Zhong, Q. Wang, S. Bak, S. Hwang, Y. Du, H. Wang, J. Am. Chem. Soc. 2023, 145(13), 7390–7396.
- 4J. Liu, Y. Zhou, T. Yan, X.-P. Gao, Adv. Funct. Mater. 2023, 34(4), 202309625.
- 5C. Guo, M. Liu, G. Gao, X. Tian, J. Zhou, L. Dong, Q. Li, Y. Chen, S. Li, Y. Lan, Angew. Chem. Int. Ed. 2021, 61(3), 202113315.
- 6J. Li, L. Gao, F. Pan, C. Gong, L. Sun, H. Gao, J. Zhang, Y. Zhao, G. Wang, H. Liu, Nano-Micro Lett. 2023, 16(1), 12.
- 7Z. Han, H. Ren, Z. Huang, Y. Zhang, S. Gu, C. Zhang, W. Liu, J. Yang, G. Zhou, Q. Yang, W. Lv, ACS Nano 2023, 17(5), 4453–4462.
- 8B. Du, Y. Luo, Y. Yang, W. Xue, G. Liu, J. Li, Chem. Eng. J. 2022, 442, 135823.
- 9W. Li, Z. Liang, Z. Lu, H. Yao, Z. Wei Seh, K. Yan, G. Zheng, Y. Cui, Adv. Energy Mater. 2015, 5(16), 1500211.
- 10W. Wang, K. Xi, B. Li, H. Li, S. Liu, J. Wang, H. Zhao, H. Li, A. M. Abdelkader, X. Gao, G. Li, Adv. Energy Mater. 2022, 12(19), 2200160.
- 11Y. Liu, L. Li, A. Wen, F. Cao, H. Ye, Energy Storage Mater. 2023, 55, 652–659.
- 12R. Meng, X. He, S. Jun Hoong Ong, C. Cui, S. Song, P. Paoprasert, Q. Pang, Z. J. Xu, X. Liang, Angew. Chem. Int. Ed. 2023, 62(38), 202309046.
- 13F. Chu, M. Wang, J. Liu, Z. Guan, H. Yu, B. Liu, F. Wu, Adv. Funct. Mater. 2022, 32(44), 2205393.
- 14T. Ma, Q. Zhao, J. Wang, Z. Pan, J. Chen, Angew. Chem. Int. Ed. 2016, 55(22), 6428–6432.
- 15X. Yao, C. Guo, C. Song, M. Lu, Y. Zhang, J. Zhou, H. Ding, Y. Chen, S. Li, Y. Lan, Adv. Mater. 2022, 35(7), 2208846.
- 16B. Jin, T. Lai, A. Manthiram, ACS Energy Lett. 2023, 8(9) 3767–3774.
- 17W. Bao, Z. Zhang, Y. Gan, X. Wang, J. Lia, J. Energy Chem. 2013, 22(5), 790–794.
- 18M. Zheng, X. Cai, Y. Tan, W. Wang, D. Wang, H. Fei, P. Saha, G. Wang, Chem. Eng. J. 2020, 389, 124404.
- 19C. Milroy, A. Manthiram, Adv. Mater. 2016, 28(44), 9744–9751.
- 20M. Liu, P. Chen, X. Pan, S. Pan, X. Zhang, Y. Zhou, M. Bi, J. Sun, S. Yang, A. L. Vasiliev, P. J. Kulesza, X. Ouyang, J. Xu, X. Wang, J. Zhu, Y. Fu, Adv. Funct. Mater. 2022, 32(36), 2205031.
- 21W. Zhang, M. Qian, G. Luo, X. Feng, C. Wu, W. Qin, J. Colloid Interface Sci. 2023, 641, 15–25.
- 22X. Liu, G. Zhang, B. Li, Y. Bai, D. Pan, Y. Li, Eur. Polym. J. 2008, 44(4), 1200–1208.
- 23O. B. Ilhanli, T. Erdogan, U. Tunca, G. Hizal, J. Polym. Sci. Part A 2006, 44(10), 3374–3381.
- 24D. Alemu, H. Wei, K. Ho, C. Chu, Energy Environ. Sci. 2012, 5(11), 9662–9671.
- 25E. Yildirim, G. Wu, X. Yong, T. Leong Tan, Q. Zhu, J. Xu, J. Ouyang, J.-S. Wang, S.-W. Yang, J. Mater. Chem. C 2018, 6(19), 5122–5131.
- 26N. K. Unsworth, I. Hancox, C. Argent Dearden, P. Sullivan, M. Walker, R. S. Lilley, J. Sharp, T. S. Jones, Org. Electron. 2014, 15(10), 2624–2631.
- 27J. Zhang, L. Gao, J. Sun, Y. Liu, Y. Wang, J. Wang, Diamond Relat. Mater. 2012, 22, 82–87.
- 28K. W. Daeyeon, C. Jin, K. Joonhwa, H. HyeongJun, H. Seonggeun, B. Inho, K. Junhyuk, L. Kyun Kyu, K. Youngseok, P. Taek-Soo, K. Jae-Hak, K. C-Yoon, H. Seung, Sci. Adv. 2022, 8(23), eabo3209.
- 29J. Xu, W. Zhang, Y. Chen, H. Fan, D. Su, G. Wang, J. Mater. Chem. A 2018, 6(6), 2797–2807.
- 30T. Hou, W. Xu, X. Chen, H. Peng, J. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56(28), 8178–8182.
- 31R. Liu, Z. Wei, L. Peng, L. Zhang, A. Zohar, R. Schoeppner, P. Wang, C. Wan, D. Zhu, H. Liu, Z. Wang, S. H. Tolbert, B. Dunn, Y. Huang, P. Sautet, X. Duan, Nature 2024, 626, 98–104.
- 32X. Wang, X. Zhang, Y. Zhao, D. Luo, L. Shui, Y. Li, G. Ma, Y. Zhu, Y. Zhang, G. Zhou, A. Yu, Z. Chen, Angew. Chem. Int. Ed. 2023, 62(42), e202306901.
- 33A. Dorai, J. Kawamura, T. Omata, Electrochem. Commun. 2022, 141, 107360.
- 34Q. Gong, L. Hou, T. Li, Y. Jiao, P. Wu, ACS Nano 2022, 16(5), 8449–8460.
- 35M. Si, X. Jian, Y. Xie, J. Zhou, W. Jian, J. Lin, Y. Luo, J. Hu, Y.-J. Wang, D. Zhang, T. Wang, Y. Liu, Z. Liang Wu, S. Yu Zheng, Jintao Yang, Adv. Energy Mater. 2024, 10.1002/aenm.202303991.
- 36T. Zhang, B. Li, Z. Song, W. Jiang, S. Liu, R. Mao, X. Jian, F. Hu, Energy Environ. 2023, 0, e12572.
- 37W. Yao, W. Zheng, J. Xu, C. Tian, K. Han, W. Sun, S. Xiao, ACS Nano 2021, 15(4), 7114–7130.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.