Two-Orders-of-Magnitude Enhancement of Photoinitiation Activity via a Simple Surface Engineering of Metal Nanoclusters
Jin Tang
Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
authors contributed equally to this work
Search for more papers by this authorNing Xu
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
authors contributed equally to this work
Search for more papers by this authorAn Ren
The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorProf. Liang Ma
The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorProf. Wenwu Xu
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorCorresponding Author
Prof. Zhongkang Han
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorZijie Chen
Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorCorresponding Author
Prof. Qi Li
Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorJin Tang
Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
authors contributed equally to this work
Search for more papers by this authorNing Xu
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
authors contributed equally to this work
Search for more papers by this authorAn Ren
The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorProf. Liang Ma
The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorProf. Wenwu Xu
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorCorresponding Author
Prof. Zhongkang Han
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorZijie Chen
Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorCorresponding Author
Prof. Qi Li
Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorAbstract
Development of high-performance photoinitiator is the key to enhance the printing speed, structure resolution and product quality in 3D laser printing. Here, to improve the printing efficiency of 3D laser nanoprinting, we investigate the underlying photochemistry of gold and silver nanocluster initiators under multiphoton laser excitation. Experimental results and DFT calculations reveal the high cleavage probability of the surface S−C bonds in gold and silver nanoclusters which generate multiple radicals. Based on this understanding, we design several alkyl-thiolated gold nanoclusters and achieve a more than two-orders-of-magnitude enhancement of photoinitiation activity, as well as a significant improvement in printing resolution and fabrication window. Overall, this work for the first time unveils the detailed radical formation pathways of gold and silver nanoclusters under multiphoton activation and substantially improves their photoinitiation sensitivity via surface engineering, which pushes the limit of the printing efficiency of 3D laser lithography.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202403645-sup-0001-misc_information.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, J. M. DeSimone, Science 2015, 347, 1349–1352.
- 2V. Hahn, T. Messer, N. M. Bojanowski, E. R. Curticean, I. Wacker, R. R. Schröder, E. Blasco, M. Wegener, Nat. Photonics 2021, 15, 932–938.
- 3X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang, C. M. Spadaccini, Science 2014, 344, 1373–1377.
- 4M. Regehly, Y. Garmshausen, M. Reuter, N. F. König, E. Israel, D. P. Kelly, C.-Y. Chou, K. Koch, B. Asfari, S. Hecht, Nature 2020, 588, 620–624.
- 5B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, H. K. Taylor, Science 2019, 363, 1075–1079.
- 6W. Jung, Y.-H. Jung, P. V. Pikhitsa, J. Feng, Y. Yang, M. Kim, H.-Y. Tsai, T. Tanaka, J. Shin, K.-Y. Kim, H. Choi, J. Rho, M. Choi, Nature 2021, 592, 54–59.
- 7S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697–698.
- 8D. W. Yee, J. R. Greer, Polym. Int. 2021, 70, 964–976.
- 9M. Lunzer, J. S. Beckwith, F. Chalupa-Gantner, A. Rosspeintner, G. Licari, W. Steiger, C. Hametner, R. Liska, J. Fröhlich, E. Vauthey, A. Ovsianikov, B. Holzer, Chem. Mater. 2022, 34, 3042–3052.
- 10I. Henning, A. W. Woodward, G. A. Rance, B. T. Paul, R. D. Wildman, D. J. Irvine, J. C. Moore, Adv. Funct. Mater. 2020, 30, 2006108.
- 11J. Tang, X. Xu, X. Shen, C. Kuang, H. Chen, M. Shi, N. Huang, ACS Appl. Polym. Mater. 2023, 5, 2956–2963.
- 12W. Qiu, P. Hu, J. Zhu, R. Liu, Z. Li, Z. Hu, Q. Chen, K. Dietliker, R. Liska, ChemPhotoChem 2019, 3, 1090–1094.
- 13N. Waiskopf, S. Magdassi, U. Banin, J. Am. Chem. Soc. 2020, DOI 10.1021/jacs.0c10554.
- 14T. Wloka, M. Gottschaldt, U. S. Schubert, Chem. Eur. J. 2022, 28, e202104191.
- 15E. Skliutas, M. Lebedevaite, E. Kabouraki, T. Baldacchini, J. Ostrauskaite, M. Vamvakaki, M. Farsari, S. Juodkazis, M. Malinauskas, Nat. Photonics 2021, 10, 1211–1242.
- 16Q. Li, J. Kulikowski, D. Doan, O. A. Tertuliano, C. J. Zeman, M. M. Wang, G. C. Schatz, X. W. Gu, Science 2022, 378, 768–773.
- 17P. Kiefer, V. Hahn, M. Nardi, L. Yang, E. Blasco, C. Barner-Kowollik, M. Wegener, Adv. Opt. Mater. 2020, 8, 2000895.
- 18H. Qian, M. Zhu, E. Lanni, Y. Zhu, M. E. Bier, R. Jin, J. Phys. Chem. C 2009, 113, 17599–17603.
- 19Y. Shichibu, Y. Negishi, T. Watanabe, N. K. Chaki, H. Kawaguchi, T. Tsukuda, J. Phys. Chem. C 2007, 111, 7845–7847.
- 20L. V. Nair, S. Hossain, S. Takagi, Y. Imai, G. Hu, S. Wakayama, B. Kumar, W. Kurashige, D. Jiang, Y. Negishi, Nanoscale 2018, 10, 18969–18979.
- 21M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin, J. Am. Chem. Soc. 2008, 130, 5883–5885.
- 22M. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray, J. Am. Chem. Soc. 2008, 130, 3754–3755.
- 23X. Lin, C. Liu, K. Sun, R. Wu, X. Fu, J. Huang, Nano Res. 2019, 12, 309–314.
- 24X. Kang, X. Wei, S. Jin, Q. Yuan, X. Luan, Y. Pei, S. Wang, M. Zhu, R. Jin, Proc. Natl. Acad. Sci. USA 2019, 116, 18834–18840.
- 25L. C. McKenzie, T. O. Zaikova, J. E. Hutchison, J. Am. Chem. Soc. 2014, 136, 13426–13435.
- 26Y. Shichibu, K. Konishi, Small 2010, 6, 1216–1220.
- 27Z. Liu, Y. Li, E. Kahng, S. Xue, X. Du, S. Li, R. Jin, ACS Nano 2022, 16, 18448–18458.
- 28Z. Tang, T. Ahuja, S. Wang, G. Wang, Nanoscale 2012, 4, 4119–4124.
- 29Z. Tang, B. Xu, B. Wu, M. W. Germann, G. Wang, J. Am. Chem. Soc. 2010, 132, 3367–3374.
- 30Z. Tang, D. A. Robinson, N. Bokossa, B. Xu, S. Wang, G. Wang, J. Am. Chem. Soc. 2011, 133, 16037–16044.
- 31R. G. Hicks, Org. Biomol. Chem. 2006, 5, 1321–1338.
- 32T. Ackermann, Angew. Chem. 1977, 89, 921–921.
- 33I. Mayer, J. Comput. Chem. 2007, 28, 204–221.
- 34L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, Y. F. Lu, Opt. Lett. 2014, 39, 3034–3037.
- 35Z. Liu, L. Luo, R. Jin, Adv. Mater. 2023, 2309073.
- 36W.-D. Si, C. Zhang, M. Zhou, W.-D. Tian, Z. Wang, Q. Hu, K.-P. Song, L. Feng, X.-Q. Huang, Z.-Y. Gao, C.-H. Tung, D. Sun, Sci. Adv. 2023, 9, eadg3587.
- 37X. Kang, M. Zhu, Chem. Soc. Rev. 2019, 48, 2422–2457.
- 38Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D. T. Leong, J. Y. Lee, J. Xie, J. Am. Chem. Soc. 2012, 134, 16662–16670.
- 39M. R. Narouz, S. Takano, P. A. Lummis, T. I. Levchenko, A. Nazemi, S. Kaappa, S. Malola, G. Yousefalizadeh, L. A. Calhoun, K. G. Stamplecoskie, H. Häkkinen, T. Tsukuda, C. M. Crudden, J. Am. Chem. Soc. 2019, 141, 14997–15002.
- 40K. Pyo, V. D. Thanthirige, K. Kwak, P. Pandurangan, G. Ramakrishna, D. Lee, J. Am. Chem. Soc. 2015, 137, 8244–8250.
- 41Z. Han, X.-Y. Dong, P. Luo, S. Li, Z.-Y. Wang, S.-Q. Zang, T. C. W. Mak, Sci. Adv. 2020, 6, eaay0107.
- 42J. Dong, Z. Gan, W. Gu, Q. You, Y. Zhao, J. Zha, J. Li, H. Deng, N. Yan, Z. Wu, Angew. Chem. Int. Ed. 2021, 60, 17932–17936.
- 43S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu, R. Jin, Angew. Chem. Int. Ed. 2014, 53, 2376–2380.
- 44X. Wang, B. Yin, L. Jiang, C. Yang, Y. Liu, G. Zou, S. Chen, M. Zhu, Science 2023, 381, 784–790.
- 45W.-Q. Shi, L. Zeng, R.-L. He, X.-S. Han, Z.-J. Guan, M. Zhou, Q.-M. Wang, Science 2024, 383, 326–330.
- 46S. Zhou, L. Gustavsson, G. Beaune, S. Chandra, J. Niskanen, J. Ruokolainen, J. V. I. Timonen, O. Ikkala, B. Peng, R. H. A. Ras, Angew. Chem. Int. Ed. 2023, 62, e202312679.
- 47C. M. Aikens, Acc. Chem. Res. 2018, 51, 3065–3073.
- 48R.-W. Huang, X. Song, S. Chen, J. Yin, P. Maity, J. Wang, B. Shao, H. Zhu, C. Dong, P. Yuan, T. Ahmad, O. F. Mohammed, O. M. Bakr, J. Am. Chem. Soc. 2023, 145, 13816–13827.
- 49Y. Zeng, S. Havenridge, M. Gharib, A. Baksi, K. L. D. M. Weerawardene, A. R. Ziefuß, C. Strelow, C. Rehbock, A. Mews, S. Barcikowski, M. M. Kappes, W. J. Parak, C. M. Aikens, I. Chakraborty, J. Am. Chem. Soc. 2021, 143, 9405–9414.
- 50M. A. H. Muhammed, L. K. Cruz, A.-H. Emwas, A. M. El-Zohry, B. Moosa, O. F. Mohammed, N. M. Khashab, Angew. Chem. Int. Ed. 2019, 58, 15665–15670.
- 51A. Pniakowska, K. Kumaranchira Ramankutty, P. Obstarczyk, M. Perić Bakulić, Ž. Sanader Maršić, V. Bonačić-Koutecký, T. Bürgi, J. Olesiak-Bańska, Angew. Chem. Int. Ed. 2022, 61, e202209645.
- 52C. Yao, C.-Q. Xu, I.-H. Park, M. Zhao, Z. Zhu, J. Li, X. Hai, H. Fang, Y. Zhang, G. Macam, J. Teng, L. Li, Q.-H. Xu, F.-C. Chuang, J. Lu, C. Su, J. Li, J. Lu, Angew. Chem. Int. Ed. 2020, 59, 8270–8276.
- 53H. Peng, Z. Huang, H. Deng, W. Wu, K. Huang, Z. Li, W. Chen, J. Liu, Angew. Chem. Int. Ed. 2020, 59, 9982–9985.
- 54V. Rück, M. B. Liisberg, C. B. Mollerup, Y. He, J. Chen, C. Cerretani, T. Vosch, Angew. Chem. Int. Ed. 2023, 62, e202309760.
- 55P. Chandrashekar, G. Sardar, T. Sengupta, A. C. Reber, P. K. Mondal, D. Kabra, S. N. Khanna, P. Deria, S. Mandal, Angew. Chem. Int. Ed. 2024, 63, e202317345.
- 56J. Zhao, A. Ziarati, A. Rosspeintner, T. Bürgi, Angew. Chem. Int. Ed. 2024, 63, e202316649.
- 57P. Liu, R. Qin, G. Fu, N. Zheng, J. Am. Chem. Soc. 2017, 139, 2122–2131.
- 58Y. Liu, X. Chai, X. Cai, M. Chen, R. Jin, W. Ding, Y. Zhu, Angew. Chem. Int. Ed. 2018, 57, 9775–9779.
- 59X.-K. Wan, J.-Q. Wang, Q.-M. Wang, Angew. Chem. Int. Ed. 2021, 60, 20748–20753.
- 60S. Lee, M. S. Bootharaju, G. Deng, S. Malola, H. Häkkinen, N. Zheng, T. Hyeon, J. Am. Chem. Soc. 2021, 143, 12100–12107.
- 61H. Seong, Y. Jo, V. Efremov, Y. Kim, S. Park, S. M. Han, K. Chang, J. Park, W. Choi, W. Kim, C. H. Choi, J. S. Yoo, D. Lee, J. Am. Chem. Soc. 2023, 145, 2152–2160.
- 62J.-P. Dong, Y. Xu, X.-G. Zhang, H. Zhang, L. Yao, R. Wang, S.-Q. Zang, Angew. Chem. Int. Ed. 2023, 62, e202313648.
- 63J.-Q. Fan, Y. Yang, C.-B. Tao, M.-B. Li, Angew. Chem. Int. Ed. 2023, 62, e202215741.
- 64Y. Feng, F. Fu, L. Zeng, M. Zhao, X. Xin, J. Liang, M. Zhou, X. Fang, H. Lv, G.-Y. Yang, Angew. Chem. Int. Ed. 2024, 63, e202317341.
- 65Y. Tan, G. Sun, T. Jiang, D. Liu, Q. Li, S. Yang, J. Chai, S. Gao, H. Yu, M. Zhu, Angew. Chem. Int. Ed. 2024, 63, e202317471.
- 66Q.-J. Wu, D.-H. Si, P.-P. Sun, Y.-L. Dong, S. Zheng, Q. Chen, S.-H. Ye, D. Sun, R. Cao, Y.-B. Huang, Angew. Chem. Int. Ed. 2023, 62, e202306822.
- 67S. Zhuang, D. Chen, W.-P. Ng, L.-J. Liu, M.-Y. Sun, D. Liu, T. Nawaz, Q. Xia, X. Wu, Y.-L. Huang, S. Lee, J. Yang, J. Yang, J. He, Angew. Chem. Int. Ed. 2023, 62, e202306696.
- 68S. Dai, T. Kajiwara, M. Ikeda, I. Romero-Muñiz, G. Patriarche, A. E. Platero-Prats, A. Vimont, M. Daturi, A. Tissot, Q. Xu, C. Serre, Angew. Chem. Int. Ed. 2022, 61, e202211848.
- 69L. Qin, F. Sun, X. Ma, G. Ma, Y. Tang, L. Wang, Q. Tang, R. Jin, Z. Tang, Angew. Chem. Int. Ed. 2021, 60, 26136–26141.
- 70M. R. Narouz, K. M. Osten, P. J. Unsworth, R. W. Y. Man, K. Salorinne, S. Takano, R. Tomihara, S. Kaappa, S. Malola, C.-T. Dinh, J. D. Padmos, K. Ayoo, P. J. Garrett, M. Nambo, J. H. Horton, E. H. Sargent, H. Häkkinen, T. Tsukuda, C. M. Crudden, Nat. Chem. 2019, 11, 419–425.
- 71P. N. Gunawardene, J. Martin, J. M. Wong, Z. Ding, J. F. Corrigan, M. S. Workentin, Angew. Chem. Int. Ed. 2022, 61, e202205194.
- 72K. Isozaki, K. Iseri, R. Saito, K. Ueda, M. Nakamura, Angew. Chem. Int. Ed. 2024, 63, e202312135.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.