Efficient Homolytic Cleavage of H2O2 on Hydroxyl-Enriched Spinel CuFe2O4 with Dual Lewis Acid Sites
Dr. Lei Tian
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 P. R. China
Search for more papers by this authorZi-Jun Tang
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
Search for more papers by this authorLe-Yang Hao
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
Search for more papers by this authorTing Dai
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jian-Ping Zou
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhao-Qing Liu
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
Search for more papers by this authorDr. Lei Tian
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 P. R. China
Search for more papers by this authorZi-Jun Tang
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
Search for more papers by this authorLe-Yang Hao
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
Search for more papers by this authorTing Dai
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jian-Ping Zou
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhao-Qing Liu
School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006 P. R. China
Search for more papers by this authorAbstract
Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O−O bonds (1.47 Å → 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600 mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202401434-sup-0001-misc_information.pdf3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aQ. X. Zhou, C. L. Song, P. F. Wang, Z. Y. Zhao, Y. Li, S. H. Zhan, Proc. Natl. Acad. Sci. USA 2023, 120, e2300085120;
- 1bX. M. Xu, Y. M. Zhang, Y. Chen, C. H. Liu, W. J. Wang, J. J. Wang, H. T. Huang, J. Y. Feng, Z. S. Li, Z. G. Zou, Proc. Natl. Acad. Sci. USA 2022, 119, e2205562119;
- 1cY. J. Zhang, G. X. Huang, L. R. Winter, J. J. Chen, L. L. Tian, S. C. Mei, Z. Zhang, F. Chen, Z. Y. Guo, R. Ji, Y. Z. You, W. W. Li, X. W. Liu, H. Q. Yu, M. Elimelech, Nat. Commun. 2022, 13, 3005.
- 2
- 2aB. C. Hodges, E. L. Cates, J. H. Kim, Nat. Nanotechnol. 2018, 13, 642–650;
- 2bW. Q. Zhang, S. Q. Zhou, J. L. Sun, X. Y. Meng, J. M. Luo, D. D. Zhou, J. Crittenden, Environ. Sci. Technol. 2018, 52, 7380–7389;
- 2cL. Tian, P. Chen, X. H. Jiang, L. S. Chen, L. L. Tong, H. Y. Yang, J. P. Fan, D. S. Wu, J. P. Zou, S. L. Luo, Water Res. 2022, 209, 117890;
- 2dJ. J. Hu, S. Wang, J. Q. Yu, W. K. Nie, J. Sun, S. B. Wang, Environ. Sci. Technol. 2021, 55, 1260–1269.
- 3
- 3aS. C. Mei, L. Li, G. X. Huang, X. Q. Pan, H. Q. Yu, Water Res. 2023, 241, 120151;
- 3bQ. Y. Yan, C. Lian, K. Huang, L. H. Liang, H. R. Yu, P. C. Yin, J. L. Zhang, M. Y. Xing, Angew. Chem. Int. Ed. 2021, 60, 17155–17163;
- 3cS. Zhang, T. Hedtke, Q. H. Zhu, M. Sun, S. Weon, Y. M. Zhao, E. Stavitski, M. Elimelech, J. H. Kim, Environ. Sci. Technol. 2021, 55, 9266–9275.
- 4
- 4aL. Wang, L. Rao, M. Ran, Q. Shentu, Z. Wu, W. Song, Z. Zhang, H. Li, Y. Yao, W. Lv, M. Xing, Nat. Commun. 2023, 14, 7841;
- 4bY. Chen, C. J. Miller, T. D. Waite, Environ. Sci. Technol. 2021, 55, 14414–14425;
- 4cY. Chen, C. J. Miller, T. D. Waite, Environ. Sci. Technol. 2022, 56, 1278–1288.
- 5
- 5aJ. F. Zheng, S. Zhang, Water Res. 2023, 246, 120696;
- 5bL. L. Cui, X. Y. Zhao, H. J. Xie, Z. H. Zhang, ACS Catal. 2022, 12, 13334–13348.
- 6
- 6aM. Y. Xing, W. J. Xu, C. C. Dong, Y. C. Bai, J. B. Zeng, Y. Zhou, J. L. Zhang, Y. D. Yin, Chem. 2014, 4, 1359–1372;
- 6bL. N. Su, P. F. Wang, X. L. Ma, J. H. Wang, S. H. Zhan, Angew. Chem. Int. Ed. 2021, 60, 21261–21266;
- 6cL. L. Zhu, J. H. Ji, J. Liu, S. Mine, M. Matsuoka, J. L. Zhang, M. Y. Xing, Angew. Chem. Int. Ed. 2020, 59, 13968–13976;
- 6dK. Sobanska, P. Pietrzyk, Z. Sojka, ACS Catal. 2017, 7, 2935–3947.
- 7
- 7aM. Kitano, J. Kujirai, K. Ogasawara, S. Matsuishi, T. Tada, Y. Niwa, H. Hosono, J. Am. Chem. Soc. 2019, 141, 20344–20353;
- 7bR. Svensson, H. Gronbeck, J. Am. Chem. Soc. 2023, 145, 11579–11588;
- 7cB. Dong, Y. C. Pei, F. Zhao, T. W. Goh, Z. Y. Qi, C. X. Xiao, K. C. Chen, W. Y. Huang, N. Fang, Nat. Catal. 2018, 1, 135–140.
- 8
- 8aL. L. Lin, W. Zhou, R. Gao, S. Y. Yao, X. Zhang, W. Q. Xu, S. J. Zheng, Z. Jiang, Q. L. Yu, Y. W. Li, C. Shi, X. D. Wen, D. Ma, Nature 2017, 544, 80–83;
- 8bH. Adkins, A. A. Pavlic, J. Am. Chem. Soc. 1947, 69, 3039–3041.
- 9
- 9aS. Huang, F. Feng, R. T. Huang, T. Ouyang, J. L. Liu, Z. Q. Liu, Adv. Mater. 2022, 34, 2208438;
- 9bX. Kang, W. F. Wang, P. Y. Wu, L. P. Hou, Z.-Q. Liu, Angew. Chem. Int. Ed. 2023, 62, e202301408.
- 10
- 10aL. Tian, X. Y. Xia, L. J. Zhou, L. L. Zheng, Q. J. Xing, L. S. Zhang, J. P. Zou, Z. Q. Liu, Appl. Catal. B 2024, 340, 123260;
- 10bW. W. Lin, H. Chen, G. B. Lin, S. Y. Yao, Z. H. Zhang, J. Z. Qi, M. Z. Jing, W. Y. Song, J. Li, X. Liu, J. Fu, S. Dai, Angew. Chem. Int. Ed. 2022, 61, e202207807;
- 10cY. D. Yan, J. Yu, Y. Du, S. C. Yan, M. Gu, W. Zhou, Z. H. Zou, Cell Rep. Phys. Sci. 2023, 4, 101406.
- 11
- 11aZ. Y. Guo, Y. Si, W. Q. Xia, F. Wang, H. Q. Liu, C. Yang, W. J. Zhang, W. W. Li, Proc. Natl. Acad. Sci. USA 2022, 119, e2201607119;
- 11bX. T. Wang, T. Ouyang, L. Wang, J. H. Zhong, T. Y. Ma, Z. Q. Liu, Angew. Chem. Int. Ed. 2019, 58, 13291–13296.
- 12
- 12aC. L. Song, Q. Zhan, F. Liu, C. Wang, H. C. Li, X. Wang, X. F. Guo, Y. C. Cheng, W. Sun, L. Wang, J. S. Qian, B. C. Pan, Angew. Chem. Int. Ed. 2022, 61, e202200406;
- 12bT. Tatarchuk, A. Shyichuk, N. Danyliuk, M. Naushad, V. Kotsyubynsky, V. Boychuk, Chemosphere 2023, 326, 138364;
- 12cH. L. Qian, Q. D. Hou, G. J. Yu, Y. F. Nie, C. Y. L. Bai, X. Y. Bai, M. T. Ju, J. Cleaner Prod. 2020, 273, 123028;
- 12dL. L. Cui, Q. Q. Li, B. Chen, J. Qiu, W. H. Jing, X. H. Gu, Appl. Surf. Sci. 2021, 567, 150874.
- 13Y. P. Wang, C. Liu, Y. T. Zhang, W. D. Meng, B. Yu, S. Y. Pu, D. H. Yuan, F. Qi, B. B. Xu, W. Chu, Appl. Catal. B 2018, 235, 264–273.
- 14C. R. Wu, Y. Sun, Z. N. Yang, J. Y. Hu, T. Y. Ding, J. Cheng, K. H. L. Zhang, Chem. Mater. 2022, 34, 10509–10516.
- 15Z. P. Wang, P. Y. Wu, X. B. Zou, S. Wang, L. Du, T. Ouyang, Z. Q. Liu, Adv. Funct. Mater. 2023, 33, 2214275.
- 16J. Chastain, R. C. King Jr, Perkin–Elmer Corporation. 1992, 40.
- 17
- 17aB. Hammer, J. K. Norskov, Nature 1995, 376, 238–240;
- 17bJ. X. Wei, K. Xiao, Y. X. Chen, X. P. Guo, B. L. Huang, Z. Q. Liu, Energy Environ. Sci. 2022, 15, 4592.
- 18Y. Lei, C. S. Chen, Y. J. Tu, Y. H. Huang, H. Zhang, Environ. Sci. Technol. 2015, 49, 6838–6845.
- 19Y. Ma, Y.-M. Zheng, J. P. Chen, J. Colloid Interface Sci. 2011, 354, 785–792.
- 20W. B. Hu, L. M. Yang, P. H. Shao, H. Shi, Z. W. Chang, D. F. Fang, Y. Wei, Y. F. Feng, Y. Huang, K. Yu, X. B. Luo, Environ. Sci. Technol. 2022, 56, 10412–10422.
- 21
- 21aX. Chang, T. Wang, J. Gong, Energy Environ. Sci. 2016, 9, 2177–2196;
- 21bX. Xu, Y. Cui, T. Chen, K. Jiang, J. Wang, Y. Xiao, X. Yang, J. Zhu, H. Chen, X. Ding, ACS Catal. 2023, 13, 4700–4710.
- 22
- 22aL. Tian, L. S. Zhang, L. L. Zheng, Y. Chen, L. Ding, J. P. Fan, D. S. Wu, J. P. Zou, S. L. Luo, Angew. Chem. Int. Ed. 2022, 61, e202214145;
- 22bL. Tian, M. Y. Yin, L. L. Zheng, Y. Chen, W. Liu, F. P. Fan, D. S. Wu, J. P. Zou, S. L. Luo, Sep. Purif. Technol. 2023, 309, 123021;
- 22cB. K. Huang, X. Y. Ren, J. Zhao, Z. L. Wu, X. H. Wang, X. Y. Song, X. N. Li, B. Liu, Z. K. Xiong, B. Lai, Environ. Sci. Technol. 2023, 57, 14071–14081.
- 23
- 23aS. Lu, X. C. Li, Y. M. Cheng, J. Zhou, G. Zhang, Proc. Natl. Acad. Sci. USA 2023, 120, e2306835120;
- 23bQ. Y. Yi, J. H. Ji, C. C. Dong, J. Liu, J. L. Zhang, M. Y. Xing, Environ. Sci. Technol. 2019, 53, 9725–9733.
- 24S. Kong, A. J. Davison, Arch. Biochem. Biophys. 1980, 204, 18–29.
- 25L. M. Jin, Y. F. Ren, W. T. Zheng, F. Pan, S. J. You, Y. B. Liu, ACS EST Engg. 2023, 3, 2243–2251.
- 26H. Y. Zhan, R. R. Zhou, R. F. Wang, Q. X. Zhou, Proc. Natl. Acad. Sci. USA 2023, 120, e2305378120.
- 27
- 27aT. S. Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, R. J. Tayade, Chem. Eng. J. 2011, 169, 126–134;
- 27bF. A. Qaraah, S. A. Mahyoub, A. Hezam, A. Qaraah, Qa. A. Drmosh, G. L. Xiu, Chin. J. Catal. 2022, 43, 2637–2651;
- 27cP. Tao, Y. Xu, C. Song, Y. Yin, Z. Yang, S. Wen, S. Wang, H. Liu, S. Li, C. Li, T. Wang, M. Shao, Sep. Purif. Technol. 2017, 179, 175–183.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.