Anion-Coordination Foldamer-Based Polymer Network: from Molecular Spring to Elastomer
Jiangping Qin
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yongming Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorTian Wang
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorNa Wang
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorDr. Wenhua Xu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorDr. Lin Cheng
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
Search for more papers by this authorProf. Wei Yu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
Search for more papers by this authorProf. Xuzhou Yan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
Search for more papers by this authorProf. Dr. Lingyan Gao
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Bo Zheng
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Biao Wu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, P. R. China
Search for more papers by this authorJiangping Qin
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yongming Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorTian Wang
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorNa Wang
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorDr. Wenhua Xu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorDr. Lin Cheng
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
Search for more papers by this authorProf. Wei Yu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
Search for more papers by this authorProf. Xuzhou Yan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
Search for more papers by this authorProf. Dr. Lingyan Gao
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Bo Zheng
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Biao Wu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069 Xi'an, P. R. China
Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, P. R. China
Search for more papers by this authorAbstract
Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligo(urea) ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer networks shows a dramatic increase from P-L2UCl (non-folding), to P-L4UCl (a full turn), and then to P-L6UCl (1.5 turns), in terms of strength (2.62 MPa; 14.26 MPa; 22.93 MPa), elongation at break (70 %; 325 %; 352 %), Young's modulus (2.69 MPa; 63.61 MPa; 141.50 MPa), and toughness (1.12 MJ/m3; 21.39 MJ/m3; 49.62 MJ/m3), respectively, which is also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202400989-sup-0001-misc_information.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. J. Roberts, E. Azizi, J. Exp. Biol. 2011, 214, 353–361;
- 1bR. D. Vale, R. A. Milligan, Science 2000, 288, 88–95;
- 1cL. Mahadevan, P. Matsudaira, Science 2000, 288, 95–99.
- 2
- 2aA. Upadhyaya, M. Baraban, J. Wong, P. Matsudaira, A. van Oudenaarden, L. Mahadevan, Biophys. J. 2008, 94, 265–272;
- 2bG. Misra, R. B. Dickinson, A. J. C. Ladd, Biophys. J. 2010, 98, 2923–2932.
- 3
- 3aM. Heim, L. Römer, T. Scheibel, Chem. Soc. Rev. 2010, 39, 156–164;
- 3bA. Miserez, P. A. Guerette, Chem. Soc. Rev. 2013, 42, 1973–1995;
- 3cF. Hong, F. Zhang, Y. Liu, H. Yan, Chem. Rev. 2017, 117, 12584–12640;
- 3dL. Fu, H. Wang, H. Li, CCS Chem. 2019, 1, 138–147;
- 3eL. Shao, J. Ma, J. L. Prelesnik, Y. Zhou, M. Nguyen, M. Zhao, S. A. Jenekhe, S. V. Kalinin, A. L. Ferguson, J. Pfaendtner, C. J. Mundy, J. J. De Yoreo, F. Baneyx, C.-L. Chen, Chem. Rev. 2022, 122, 17397–17478.
- 4
- 4aC. J. Bruns, J. F. Stoddart, Acc. Chem. Res. 2014, 47, 2186–2199;
- 4bE. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda, Chem. Rev. 2016, 116, 13752–13990;
- 4cM. Barboiu, A.-M. Stadler, J.-M. Lehn, Angew. Chem. Int. Ed. 2016, 55, 4130–4154;
- 4dD. Xia, P. Wang, X. Ji, N. M. Khashab, J. L. Sessler, F. Huang, Chem. Rev. 2020, 120, 6070–6123;
- 4eC.-B. Huang, A. Ciesielski, P. Samorì, Angew. Chem. Int. Ed. 2020, 59, 7319–7330.
- 5
- 5aA. Goujon, E. Moulin, G. Fuks, N. Giuseppone, CCS Chem. 2019, 1, 83–96;
- 5bC. Liu, N. Morimoto, L. Jiang, S. Kawahara, T. Noritomi, H. Yokoyama, K. Mayumi, K. Ito, Science 2021, 372, 1078–1081;
- 5cZ. Zhang, W. You, P. Li, J. Zhao, Z. Guo, T. Xu, J. Chen, W. Yu, X. Yan, J. Am. Chem. Soc. 2023, 145, 567–578;
- 5dY. Wang, Z. Zhang, H. Zhang, J. Zhao, G. Liu, R. Bai, Y. Liu, W. You, W. Yu, X. Yan, Chem 2023, 9, 2206–2221;
- 5eL. Chen, W. You, J. Wang, X. Yang, D. Xiao, H. Zhu, Y. Zhang, G. Li, W. Yu, J. L. Sessler, F. Huang, J. Am. Chem. Soc. 2024, 146, 1109–1121;
- 5fX. Dong, Z. Zhang, H. Xiao, G. Liu, S.-N. Lei, Z. Wang, X. Yan, S. Wang, C.-H. Tung, L.-Z. Wu, H. Cong, Angew. Chem. Int. Ed. 2024, 63, e202318368.
- 6
- 6aD. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, Chem. Rev. 2001, 101, 3893–4012;
- 6bG. Guichard, I. Huc, Chem. Commun. 2011, 47, 5933–5941;
- 6cD.-W. Zhang, X. Zhao, Z.-T. Li, Acc. Chem. Res. 2014, 47, 1961–1970;
- 6dQ.-H. Guo, Y. Jiao, Y. Feng, J. F. Stoddart, CCS Chem. 2021, 3, 1542–1572;
- 6eZ.-H. Zhang, B. J. Andreassen, D. P. August, D. A. Leigh, L. Zhang, Nat. Mater. 2022, 21, 275–283.
- 7
- 7aR. B. Prince, J. G. Saven, P. G. Wolynes, J. S. Moore, J. Am. Chem. Soc. 1999, 121, 3114–3121;
- 7bO.-S. Jung, Y. J. Kim, Y.-A. Lee, J. K. Park, H. K. Chae, J. Am. Chem. Soc. 2000, 122, 9921–9925;
- 7cM. Inouye, M. Waki, H. Abe, J. Am. Chem. Soc. 2004, 126, 2022–2027;
- 7dH.-J. Kim, E. Lee, H.-s. Park, M. Lee, J. Am. Chem. Soc. 2007, 129, 10994–10995;
- 7eY. Hua, A. H. Flood, J. Am. Chem. Soc. 2010, 132, 12838–12840;
- 7fE. Ohta, H. Sato, S. Ando, A. Kosaka, T. Fukushima, D. Hashizume, M. Yamasaki, K. Hasegawa, A. Muraoka, H. Ushiyama, K. Yamashita, T. Aida, Nat. Chem. 2011, 3, 68–73;
- 7gD. Sluysmans, S. Hubert, C. J. Bruns, Z. Zhu, J. F. Stoddart, A.-S. Duwez, Nat. Nanotechnol. 2018, 13, 209–213;
- 7hF. Devaux, X. Li, D. Sluysmans, V. Maurizot, E. Bakalis, F. Zerbetto, I. Huc, A.-S. Duwez, Chem 2021, 7, 1333–1346;
- 7iA. Molliet, S. Doninelli, L. Hong, B. Tran, M. Debas, S. Salentinig, A. F. M. Kilbinger, T. Casalini, J. Am. Chem. Soc. 2023, 145, 27830–27837.
- 8
- 8aR. Liu, H. Wang, W. Lu, L. Cui, S. Wang, Y. Wang, Q. Chen, Y. Guan, Y. Zhang, Chem. Eng. J. 2021, 415, 128839;
- 8bY. Zhang, Y. Wang, Y. Guan, Y. Zhang, Nat. Commun. 2022, 13, 6671.
- 9
- 9aZ.-M. Shi, J. Huang, Z. Ma, X. Zhao, Z. Guan, Z.-T. Li, Macromolecules 2010, 43, 6185–6192;
- 9bK. A. Miller, O. J. Dodo, G. P. Devkota, V. C. Kirinda, K. G. E. Bradford, J. L. Sparks, C. S. Hartley, D. Konkolewicz, Chem. Commun. 2022, 58, 5590–5593;
- 9cC. Liu, Z. Wang, L. Zhang, Z. Dong, J. Am. Chem. Soc. 2022, 144, 18784–18789.
- 10T. Ikeda, ACS Appl. Polym. Mater. 2023, 5, 839–845.
- 11
- 11aH. Juwarker, K.-S. Jeong, Chem. Soc. Rev. 2010, 39, 3664–3674;
- 11bN. Busschaert, C. Caltagirone, W. Van Rossom, P. A. Gale, Chem. Rev. 2015, 115, 8038–8155;
- 11cJ. Zhao, D. Yang, X.-J. Yang, B. Wu, Coord. Chem. Rev. 2019, 378, 415–444;
- 11dE. A. John, C. J. Massena, O. B. Berryman, Chem. Rev. 2020, 120, 2759–2782.
- 12
- 12aL. Liang, W. Zhao, X.-J. Yang, B. Wu, Acc. Chem. Res. 2022, 55, 3218–3229;
- 12bB. Li, T. Wei, X. Zhao, Y. Wang, L. Xu, X.-J. Yang, B. Wu, Angew. Chem. Int. Ed. 2023, 62, e202301300;
- 12cL. Zhang, B. Li, R. Li, Y. Wang, S. Ye, P. Zhang, B. Wu, J. Am. Chem. Soc. 2023, 145, 18221–18226;
- 12dJ. Zhu, X.-W. Sun, X. Yang, S.-N. Yu, L. Liang, Y.-Z. Chen, X. Zheng, M. Yu, L. Yan, J. Tang, W. Zhao, X.-J. Yang, B. Wu, Angew. Chem. Int. Ed. 2023, 62, e202314510.
- 13
- 13aC. Yang, B. Wu, Y. Chen, K. Zhang, Macromol. Rapid Commun. 2015, 36, 750–754;
- 13bY. Gao, J. Zhao, Z. Huang, T. K. Ronson, F. Zhao, Y. Wang, B. Li, C. Feng, Y. Yu, Y. Cheng, D. Yang, X.-J. Yang, B. Wu, Angew. Chem. Int. Ed. 2022, 61, e202201793.
- 14B. Wu, C. Jia, X. Wang, S. Li, X. Huang, X.-J. Yang, Org. Lett. 2012, 14, 684–687.
- 15
- 15aJ. Ribas-Arino, D. Marx, Chem. Rev. 2012, 112, 5412–5487;
- 15bF. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73–78;
- 15cS. Grimme, A. Hansen, S. Ehlert, J.-M. Mewes, J. Chem. Phys. 2021, 154, 064103.
- 16X. Yang, L. Cheng, Z. Zhang, J. Zhao, R. Bai, Z. Guo, W. Yu, X. Yan, Nat. Commun. 2022, 13, 6654.
- 17X. Wang, Y. Li, Y. Qian, H. Qi, J. Li, J. Sun, Adv. Mater. 2018, 30, 1803854.
- 18
- 18aR. A. Weiss, P. K. Agarwal, R. D. Lundberg, J. Appl. Polym. Sci. 1984, 29, 2719–2734;
- 18bG. J. Tudryn, W. Liu, S.-W. Wang, R. H. Colby, Macromolecules 2011, 44, 3572–3582;
- 18cZ. K. Zander, F. Wang, M. L. Becker, R. A. Weiss, Macromolecules 2016, 49, 926–934.
- 19M. A. R. Martins, D. O. Abranches, L. P. Silva, S. P. Pinho, J. A. P. Coutinho, Ind. Eng. Chem. Res. 2022, 61, 11988–11995.
- 20
- 20aD. Zhao, Z. Zhang, J. Zhao, K. Liu, Y. Liu, G. Li, X. Zhang, R. Bai, X. Yang, X. Yan, Angew. Chem. Int. Ed. 2021, 60, 16224–16229;
- 20bZ. Zhang, J. Zhao, Z. Guo, H. Zhang, H. Pan, Q. Wu, W. You, W. Yu, X. Yan, Nat. Commun. 2022, 13, 1393;
- 20cJ. Zhao, Z. Zhang, L. Cheng, R. Bai, D. Zhao, Y. Wang, W. Yu, X. Yan, J. Am. Chem. Soc. 2022, 144, 872–882;
- 20dR. Bai, Z. Zhang, W. Di, X. Yang, J. Zhao, H. Ouyang, G. Liu, X. Zhang, L. Cheng, Y. Cao, W. Yu, X. Yan, J. Am. Chem. Soc. 2023, 145, 9011–9020;
- 20eM. A. Nosiglia, N. D. Colley, M. K. Danielson, M. S. Palmquist, A. O. Delawder, S. L. Tran, G. H. Harlan, J. C. Barnes, J. Am. Chem. Soc. 2022, 144, 9990–9996.
- 21C. Du, X. N. Zhang, T. L. Sun, M. Du, Q. Zheng, Z. L. Wu, Macromolecules 2021, 54, 4313–4325.
- 22Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 2018, 359, 72–76.
- 23
- 23aT. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Nat. Mater. 2013, 12, 932–937;
- 23bY. Meng, W. Xu, M. R. Newman, D. S. W. Benoit, M. Anthamatten, Adv. Funct. Mater. 2019, 29, 1903721.
- 24
- 24aS.-H. Kang, T. Aoki, G. Kwak, Macromolecules 2019, 52, 7984–7993;
- 24bT. Li, Y. Li, X. Wang, X. Li, J. Sun, ACS Appl. Mater. Interfaces 2019, 11, 9470–9477.
- 25
- 25aC. Keith, R. A. Reddy, A. Hauser, U. Baumeister, C. Tschierske, J. Am. Chem. Soc. 2006, 128, 3051–3066;
- 25bB. J. Ree, D. Aoki, J. Kim, T. Satoh, T. Takata, M. Ree, Macromolecules 2019, 52, 5325–5336.
- 26
- 26aE. Filippidi, T. R. Cristiani, C. D. Eisenbach, J. H. Waite, J. N. Israelachvili, B. K. Ahn, M. T. Valentine, Science 2017, 358, 502–505;
- 26bL. Zhang, Z. Liu, X. Wu, Q. Guan, S. Chen, L. Sun, Y. Guo, S. Wang, J. Song, E. M. Jeffries, C. He, F.-L. Qing, X. Bao, Z. You, Adv. Mater. 2019, 31, 1901402.
- 27
- 27aJ. Wu, L.-H. Cai, D. A. Weitz, Adv. Mater. 2017, 29, 1702616;
- 27bM. Vatankhah-Varnosfaderani, W. F. M. Daniel, M. H. Everhart, A. A. Pandya, H. Liang, K. Matyjaszewski, A. V. Dobrynin, S. S. Sheiko, Nature 2017, 549, 497–501.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.