Long-cycling and High-voltage Solid State Lithium Metal Batteries Enabled by Fluorinated and Crosslinked Polyether Electrolytes
Jie Zhu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorRuiqi Zhao
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorJinping Zhang
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorXingchen Song
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorJie Liu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorNuo Xu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Hongtao Zhang
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorXiangjian Wan
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Xinyi Ji
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China E-mail: s
Search for more papers by this authorYanfeng Ma
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorChenxi Li
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Yongsheng Chen
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorJie Zhu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorRuiqi Zhao
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorJinping Zhang
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorXingchen Song
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorJie Liu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorNuo Xu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Hongtao Zhang
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorXiangjian Wan
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Xinyi Ji
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China E-mail: s
Search for more papers by this authorYanfeng Ma
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorChenxi Li
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Yongsheng Chen
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorAbstract
Solid-state lithium metal batteries (LMBs), constructed through the in situ fabrication of polymer electrolytes, are considered a critical strategy for the next-generation battery systems with high energy density and enhanced safety. However, the constrained oxidation stability of polymers, such as the extensively utilized polyethers, limits their applications in high-voltage batteries and further energy density improvements. Herein, an in situ fabricated fluorinated and crosslinked polyether-based gel polymer electrolyte, FGPE, is presented, exhibiting a high oxidation potential (5.1 V). The fluorinated polyether significantly improves compatibility with both lithium metal and high-voltage cathode, attributed to the electron-withdrawing −CF3 group and the generated LiF-rich electrolyte/electrode interphase. Consequently, the solid-state Li||LiNi0.6Co0.2Mn0.2O2 batteries employing FGPE demonstrate exceptional cycling performances of 1000 cycles with 78 % retention, representing one of the best results ever reported for polymer electrolytes. Moreover, FGPE enables batteries to operate at 4.7 V, realizing the highest operating voltage of polyether-based batteries to date. Notably, our designed in situ FGPE provides the solid-state batteries with exceptional cycling stability even at practical conditions, including high cathode loading (21 mg cm−2) and industry-level 18650-type cylindrical cells (1.3 Ah, 500 cycles). This work provides critical insights into the development of oxidation-stable polymer electrolytes and the advancement of practical high-voltage LMBs.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202400303-sup-0001-misc_information.pdf1.8 MB | Supporting Information |
ange202400303-sup-0001-Video_S1.mp419.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Kim, Y. Kim, J. Sung, J. Cho, Nat. Energy 2023, 8, 921;
- 1bJ. Liu, J. Zhang, J. Zhu, R. Zhao, Y. Zhang, Y. Ma, C. Li, H. Zhang, Y. Chen, Nano Res. 2023, 16, 12601;
- 1cW. Zhao, K. Zhang, F. Wu, X. Wang, R. Guo, K. Zhang, Y. Yuan, Y. Bai, C. Wu, Chem. Eng. J. 2023, 453, 139348.
- 2
- 2aJ. Ding, Y. Zhang, R. Xu, R. Zhang, Y. Xiao, S. Zhang, C. Bi, C. Tang, R. Xiang, H. S. Park, Q. Zhang, J. Huang, Green Energy & Environ. 2023, 8, 1509;
- 2bS. Nanda, A. Gupta, A. Manthiram, Adv. Energy Mater. 2020, 11, 2000804;
- 2cS. Kim, G. Park, S. J. Lee, S. Seo, K. Ryu, C. H. Kim, J. W. Choi, Adv. Mater. 2023, 35, 2206625.
- 3
- 3aM. Yeddala, L. Rynearson, B. L. Lucht, ACS Energy Lett. 2023, 8, 4782;
- 3bS. Qi, M. Li, Y. Gao, W. Zhang, S. Liu, J. Zhao, L. Du, Adv. Mater. 2023, 35, 2304951;
- 3cC. Luo, H. Hu, T. Zhang, S. Wen, R. Wang, Y. An, S. S. Chi, J. Wang, C. Wang, J. Chang, Z. Zheng, Y. Deng, Adv. Mater. 2022, 34, 2205677.
- 4
- 4aJ. Wang, S. Li, Q. Zhao, C. Song, Z. Xue, Adv. Funct. Mater. 2020, 31, 2008208;
- 4bG. Xi, M. Xiao, S. Wang, D. Han, Y. Li, Y. Meng, Adv. Funct. Mater. 2020, 31, 2007598;
- 4cM. Shen, Z. Wang, D. Cheng, H. Cheng, H. Xu, Y. Huang, eTransportation 2023, 18, 100264.
- 5
- 5aM. A. Cabañero Martínez, N. Boaretto, A. J. Naylor, F. Alcaide, G. D. Salian, F. Palombardini, E. Ayerbe, M. Borras, M. Casas-Cabanas, Adv. Energy Mater. 2022, 12, 2201264;
- 5bS. Xiao, L. Ren, W. Liu, L. Zhang, Q. Wang, Energy Storage Mater. 2023, 63, 102970;
- 5cK. Hiraoka, M. Inoue, K. Takahashi, K. Hayamizu, M. Watanabe, S. Seki, J. Electrochem. Soc. 2021, 168, 060501.
- 6
- 6aX. Chen, X. Li, L. Luo, S. He, J. Chen, Y. Liu, H. Pan, Y. Song, R. Hu, Adv. Energy Mater. 2023, 13, 2301230;
- 6bJ. Li, Y. Ji, H. Song, S. Chen, S. Ding, B. Zhang, L. Yang, Y. Song, F. Pan, Nano-Micro Lett. 2022, 14, 191.
- 7
- 7aY. Chen, Y. Cui, S. Wang, Y. Xiao, J. Niu, J. Huang, F. Wang, S. Chen, Adv. Mater. 2023, 35, 2300982;
- 7bM. Jiang, D. L. Danilov, R. A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2021, 11, 2103005;
- 7cS. Park, G. Choi, H. Y. Lim, K. M. Jung, S. K. Kwak, N.-S. Choi, ACS Appl. Mater. Interfaces 2023, 15, 33693;
- 7dZ. Shadike, Y. Chen, E. Hu, J. Zhang, X.-Q. Yang, Trends Chem. 2023, 5, 775.
- 8X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun, N. Holmes, H. Duan, S. Mukherjee, K. Adair, C. Zhao, J. Liang, W. Li, J. Li, Y. Liu, H. Huang, L. Zhang, S. Lu, Q. Lu, R. Li, C. V. Singh, X. Sun, Energy Environ. Sci. 2020, 13, 1318.
- 9
- 9aZ. Fang, Y. Luo, H. Liu, Z. Hong, H. Wu, F. Zhao, P. Liu, Q. Li, S. Fan, W. Duan, J. Wang, Adv. Sci. 2021, 8, e2100736;
- 9bJ. Zhu, J. Zhang, R. Zhao, Y. Zhao, J. Liu, N. Xu, X. Wan, C. Li, Y. Ma, H. Zhang, Y. Chen, Energy Storage Mater. 2023, 57, 92;
- 9cH. T. Xu, H. R. Zhang, J. Ma, G. J. Xu, T. T. Dong, J. C. Chen, G. L. Cui, ACS Energy Lett. 2019, 4, 2871;
- 9dK. Zhang, F. Wu, X. Wang, L. Zheng, X. Yang, H. Zhao, Y. Sun, W. Zhao, Y. Bai, C. Wu, Adv. Funct. Mater. 2021, 32, 2107764.
- 10
- 10aJ. Xiang, Y. Zhang, B. Zhang, L. Yuan, X. Liu, Z. Cheng, Y. Yang, X. Zhang, Z. Li, Y. Shen, J. Jiang, Y. Huang, Energy Environ. Sci. 2021, 14, 3510;
- 10bC. Z. Zhao, Q. Zhao, X. Liu, J. Zheng, S. Stalin, Q. Zhang, L. A. Archer, Adv. Mater. 2020, 32, e1905629.
- 11H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang, H. Xu, X. Yan, X. He, Adv. Energy Mater. 2022, 12, 2201762.
- 12
- 12aG. Zhou, J. Yu, F. Ciucci, Energy Storage Mater. 2022, 55, 642;
- 12bZ. Weidong, S. Han, X. Xiaoxin, H. Qiu, W. Zhaoxu, C. Kejun, L. Xiaolei, G. Jian, L. Yutao, L. Hong, Q. Jieshan, Angew. Chem. Int. Ed. 2021, 60, 18335;
- 12cY. Wang, S. Chen, Z. Li, C. Peng, Y. Li, W. Feng, Energy Storage Mater. 2022, 45, 474.
- 13
- 13aJ. Guo, X. Liu, X. Cao, X. Zhang, H. Zhang, Y. Lu, C. Zhang, X. Zhang, ACS Energy Lett. 2023, 8, 4218;
- 13bC. Zhang, Z. Lu, M. Song, Y. Zhang, C. Jing, L. Chen, X. Ji, W. Wei, Adv. Energy Mater. 2023, 13, 2203870;
- 13cY. Tian, S. Tan, C. Yang, Y. Zhao, D. Xu, Z. Lu, G. Li, J. Li, X. Zhang, C. Zhang, J. Tang, Y. Zhao, F. Wang, R. Wen, Q. Xu, Y. Guo, Nat. Commun. 2023, 14, 7247.
- 14
- 14aG. Xiao, H. Xu, C. Bai, M. Liu, Y. B. He, Interdiscip. Mater. 2023, 2, 609;
- 14bQ. Liu, L. Wang, X. He, Adv. Energy Mater. 2023, 13, 2300798;
- 14cY. Han, Y. Zhou, J. Zhu, Z. Sun, L. Xu, C. Li, Y. Ma, H. Zhang, Y. Chen, Sci. China Mater. 2020, 63, 2344.
- 15J. Xiao, Q. Li, Y. Bi, M. Cai, B. Dunn, T. Glossmann, J. Liu, T. Osaka, R. Sugiura, B. Wu, J. Yang, J.-G. Zhang, M. S. Whittingham, Nat. Energy 2020, 5, 561.
- 16
- 16aQ. Wang, C. Zhao, J. Wang, Z. Yao, S. Wang, S. G. H. Kumar, S. Ganapathy, S. Eustace, X. Bai, B. Li, M. Wagemaker, Nat. Commun. 2023, 14, 440;
- 16bK. Zhang, F. Wu, X. Wang, S. Weng, X. Yang, H. Zhao, R. Guo, Y. Sun, W. Zhao, T. Song, X. Wang, Y. Bai, C. Wu, Adv. Energy Mater. 2022, 12, 2200368.
- 17
- 17aM. M. Jia, C. Zhang, Y. W. Guo, L. S. Peng, X. Y. Zhang, W. W. Qian, L. Zhang, S. J. Zhang, Energy Environ. Mater. 2022, 5, 1294;
- 17bS.-D. Han, J. L. Allen, E. Jónsson, P. Johansson, D. W. McOwen, P. D. Boyle, W. A. Henderson, J. Phys. Chem. C 2013, 117, 5521.
- 18Y. Huijun, Q. Yu, C. Zhi, H. ping, Z. Haoshen, Angew. Chem. Int. Ed. 2021, 60, 17726.
- 19Q. Sun, Z. Cao, Z. Ma, J. Zhang, W. Wahyudi, T. Cai, H. Cheng, Q. Li, H. Kim, E. Xie, L. Cavallo, Y.-K. Sun, J. Ming, ACS Mater. Lett. 2022, 4, 2233.
- 20X. Peng, B. Liu, J. Chen, Q. Jian, Y. Li, T. Zhao, ACS Energy Lett. 2023, 8, 3586.
- 21Z. Xueying, H. Liqiang, L. Wei, W. Haotian, D. Yiming, L. Xuyang, W. Zhongqiang, Z. Honghe, H. Yunhui, ACS Energy Lett. 2021, 6, 2054.
- 22
- 22aJ.-n. Duan, Q. Hou, R.-m. Yuan, J. Fan, M. Zheng, Q. Dong, J. Mater. Chem. A 2023, 11, 548;
- 22bH. Gao, N. S. Grundish, Y. Zhao, A. Zhou, J. B. Goodenough, Energy Mater. Adv. 2021, 2021, 1932952.
- 23Z. Li, S. Weng, J. Fu, X. Wang, X. Zhou, Q. Zhang, X. Wang, L. Wei, X. Guo, Energy Storage Mater. 2022, 47, 542.
- 24P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, M. Li, T. Deng, L. Cao, S. Liu, X. He, Y. Xu, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202202731.
- 25Y. Liu, M. Wang, J. Chen, J. Yang, K. Wang, Z. Ren, W. Xi, Y. Huang, J. Zheng, X. Li, Sustain. Energy Fuels 2020, 4, 2875.
- 26
- 26aB. Xu, L. Kong, G. Wen, M. G. Pecht, IEEE Access 2021, 9, 66687;
- 26bW. Diao, S. Saxena, M. G. Pecht, IEEE Access 2020, 8, 21326;
- 26cD. P. Finegan, E. Darcy, M. Keyser, B. Tjaden, T. M. M. Heenan, R. Jervis, J. J. Bailey, N. T. Vo, O. V. Magdysyuk, M. Drakopoulos, M. Di Michiel, A. Rack, G. Hinds, D. J. L. Brett, P. R. Shearing, Adv. Sci. 2017, 5, 1700369.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.