Organic-Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission
Dr. Zhi-Xu Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (lead), Methodology (equal), Software (supporting), Writing - original draft (lead)
Search for more papers by this authorDr. He Wang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800 People's Republic of China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal), Writing - original draft (equal)
Search for more papers by this authorHao-Fei Ni
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Software (equal)
Search for more papers by this authorNa Wang
Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000 People's Republic of China
Contribution: Data curation (supporting)
Search for more papers by this authorDr. Chang-Feng Wang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Methodology (supporting)
Search for more papers by this authorPei-Zhi Huang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Formal analysis (supporting)
Search for more papers by this authorQiang-Qiang Jia
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Investigation (supporting)
Search for more papers by this authorGele Teri
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Investigation (supporting)
Search for more papers by this authorProf. Da-Wei Fu
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Funding acquisition (equal)
Search for more papers by this authorCorresponding Author
Prof. Yujian Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Methodology (equal), Supervision (equal), Validation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Zhongfu An
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800 People's Republic of China
Contribution: Methodology (equal), Supervision (equal), Validation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Yi Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Funding acquisition (equal), Investigation (equal), Project administration (lead), Resources (lead), Supervision (equal), Validation (equal)
Search for more papers by this authorDr. Zhi-Xu Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Investigation (lead), Methodology (equal), Software (supporting), Writing - original draft (lead)
Search for more papers by this authorDr. He Wang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800 People's Republic of China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal), Writing - original draft (equal)
Search for more papers by this authorHao-Fei Ni
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Software (equal)
Search for more papers by this authorNa Wang
Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000 People's Republic of China
Contribution: Data curation (supporting)
Search for more papers by this authorDr. Chang-Feng Wang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Methodology (supporting)
Search for more papers by this authorPei-Zhi Huang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Formal analysis (supporting)
Search for more papers by this authorQiang-Qiang Jia
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Investigation (supporting)
Search for more papers by this authorGele Teri
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Investigation (supporting)
Search for more papers by this authorProf. Da-Wei Fu
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Funding acquisition (equal)
Search for more papers by this authorCorresponding Author
Prof. Yujian Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Methodology (equal), Supervision (equal), Validation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Zhongfu An
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800 People's Republic of China
Contribution: Methodology (equal), Supervision (equal), Validation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Yi Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 People's Republic of China
Contribution: Funding acquisition (equal), Investigation (equal), Project administration (lead), Resources (lead), Supervision (equal), Validation (equal)
Search for more papers by this authorAbstract
Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light-polarization interactions at electron scale. Integrating ferroelectricity and long-lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic-inorganic hybrid material. Remarkably, the presented (4-methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi-level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202319650-sup-0001-(4-MePD)CdBr3_at_193_K.cif1.2 MB | Supporting Information |
ange202319650-sup-0001-(4-MePD)CdBr3_at_378_K.cif960.7 KB | Supporting Information |
ange202319650-sup-0001-(4-MePD)CdCl3_at_293_K.cif427.8 KB | Supporting Information |
ange202319650-sup-0001-(4-MePD)CdCl3_at_393_K.cif325.3 KB | Supporting Information |
ange202319650-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. E. Lines, A. M. Glass, Principles and applications of ferroelectrics and related materials, Oxford university press, 2001.
- 2Y. Liu, Y. Ma, X. Zeng, H. Xu, W. Guo, B. Wang, L. Hua, L. Tang, J. Luo, Z. Sun, Nat. Commun. 2023, 14, 2420.
- 3
- 3aS. Han, L. Li, C. Ji, X. Liu, G.-E. Wang, G. Xu, Z. Sun, J. Luo, J. Am. Chem. Soc. 2023, 145, 12853–12860;
- 3bJ. Kreisel, M. Alexe, P. A. Thomas, Nat. Mater. 2012, 11, 260;
- 3cJ. F. Scott, Science 2007, 315, 954;
- 3dW. Eerenstein, N. D. Mathur, J. F. Scott, Nature 2006, 442, 759–765.
- 4
- 4aT. Handa, R. Hashimoto, G. Yumoto, T. Nakamura, A. Wakamiya, Y. Kanemitsu, Sci. Adv. 2022, 8, eabo1621;
- 4bJ. Long, J. Rouquette, J.-M. Thibaud, R. A. S. Ferreira, L. D. Carlos, B. Donnadieu, V. Vieru, L. F. Chibotaru, L. Konczewicz, J. Haines, Y. Guari, J. Larionova, Angew. Chem. Int. Ed. 2015, 54, 2236–2240;
- 4cD. Tu, C.-N. Xu, S. Kamimura, Y. Horibe, H. Oshiro, L. Zhang, Y. Ishii, K. Hyodo, G. Marriott, N. Ueno, X.-G. Zheng, Adv. Mater. 2020, 32, 1908083.
- 5
- 5aF. Nie, K.-Z. Wang, D. Yan, Nat. Commun. 2023, 14, 1654;
- 5bL. Bian, H. Shi, X. Wang, K. Ling, H. Ma, M. Li, Z. Cheng, C. Ma, S. Cai, Q. Wu, N. Gan, X. Xu, Z. An, W. Huang, J. Am. Chem. Soc. 2018, 140, 10734–10739;
- 5cZ. Cheng, H. Shi, H. Ma, L. Bian, Q. Wu, L. Gu, S. Cai, X. Wang, W. W. Xiong, Z. An, W. Huang, Angew. Chem. Int. Ed. 2018, 57, 678–682;
- 5dH. Hu, F. Meier, D. Zhao, Y. Abe, Y. Gao, B. Chen, T. Salim, E. E. M. Chia, X. Qiao, C. Deibel, Y. M. Lam, Adv. Mater. 2018, e1707621;
- 5eW. Zheng, X. Li, N. Liu, S. Yan, X. Wang, X. Zhang, Y. Liu, Y. Liang, Y. Zhang, H. Liu, Angew. Chem. Int. Ed. 2021, 60, 24450–24455.
- 6X. Tian, Z. Wu, Y. Jia, J. Chen, R. K. Zheng, Y. Zhang, H. Luo, Appl. Phys. Lett. 2013, 102, 042907.
- 7S. Lin, C. Xiong, D. Ma, H. Li, S. Long, B. Wang, J. Mater. Chem. C 2018, 6, 10067–10072.
- 8J. Hao, Y. Zhang, X. Wei, Angew. Chem. Int. Ed. 2011, 50, 6876–6880.
- 9
- 9aS. Han, Y. Ma, L. Hua, L. Tang, B. Wang, Z. Sun, J. Luo, J. Am. Chem. Soc. 2022, 144, 20315–20322;
- 9bW.-Q. Liao, D. Zhao, Y.-Y. Tang, Y. Zhang, P.-F. Li, P.-P. Shi, X.-G. Chen, Y.-M. You, R.-G. Xiong, Science 2019, 363, 1206;
- 9cI.-H. Park, Q. Zhang, K. C. Kwon, Z. Zhu, W. Yu, K. Leng, D. Giovanni, H. S. Choi, I. Abdelwahab, Q.-H. Xu, T. C. Sum, K. P. Loh, J. Am. Chem. Soc. 2019, 141, 15972–15976;
- 9dH. Wei, Y. Yang, S. Chen, H. J. Xiang, Nat. Commun. 2021, 12, 637;
- 9eY.-M. You, W.-Q. Liao, D. Zhao, H.-Y. Ye, Y. Zhang, Q. Zhou, X. Niu, J. Wang, P.-F. Li, D.-W. Fu, Z. Wang, S. Gao, K. Yang, J.-M. Liu, J. Li, Y. Yan, R.-G. Xiong, Science 2017, 357, 306–309.
- 10
- 10aW. He, Y. Yang, C. Li, W. P. D. Wong, F. Cimpoesu, A. M. Toader, Z. Wu, X. Wu, Z. Lin, Q. H. Xu, K. Leng, A. Stroppa, K. P. Loh, J. Am. Chem. Soc. 2023, 145, 14044–14051;
- 10bY. Hu, K. Parida, H. Zhang, X. Wang, Y. Li, X. Zhou, S. A. Morris, W. H. Liew, H. Wang, T. Li, F. Jiang, M. Yang, M. Alexe, Z. Du, C. L. Gan, K. Yao, B. Xu, P. S. Lee, H. J. Fan, Nat. Commun. 2022, 13, 5607;
- 10cW. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend, A. K. Cheetham, Nat. Rev. Mater. 2017, 2, 16099.
- 11
- 11aY. Ai, H.-P. Lv, Z.-X. Wang, W.-Q. Liao, R.-G. Xiong, Trends Chem. 2021, 3, 1088–1099;
- 11bK. Ding, H. Ye, C. Su, Y.-A. Xiong, G. Du, Y.-M. You, Z.-X. Zhang, S. Dong, Y. Zhang, D.-W. Fu, Nat. Commun. 2023, 14, 2863;
- 11cY. Yao, H. Jiang, Y. Peng, X. Zhang, S. Chen, X. Liu, J. Luo, J. Am. Chem. Soc. 2021, 143, 15900–15906;
- 11dH.-Y. Zhang, Z.-X. Zhang, X.-G. Chen, X.-J. Song, Y. Zhang, R.-G. Xiong, J. Am. Chem. Soc. 2021, 143, 1664–1672;
- 11eW. Zhang, M. Hong, J. Luo, J. Am. Chem. Soc. 2021, 143, 16758–16767.
- 12
- 12aY. Peng, L. Li, C. Ji, Z. Wu, S. Wang, X. Liu, Y. Yao, J. Luo, J. Am. Chem. Soc. 2019, 141, 12197–12201;
- 12bJ. Wang, Y. Ma, Z. Wang, X. Liu, S. Han, Y. Liu, W. Guo, J. Luo, Z. Sun, Matter 2022, 5, 194–205;
- 12cW.-J. Xu, M.-F. Li, A. R. Garcia, K. Romanyuk, J. M. G. Martinho, P. Zelenovskii, A. Tselev, L. Verissimo, W.-X. Zhang, X.-M. Chen, A. Kholkin, J. Rocha, J. Am. Chem. Soc. 2023, 145, 13663–13673;
- 12dY. L. Zeng, X. Q. Huang, C. R. Huang, H. Zhang, F. Wang, Z. X. Wang, Angew. Chem. Int. Ed. 2021, 60, 10730–10735.
- 13
- 13aH. Y. Ye, Q. Zhou, X. Niu, W. Q. Liao, D. W. Fu, Y. Zhang, Y. M. You, J. Wang, Z. N. Chen, R. G. Xiong, J. Am. Chem. Soc. 2015, 137, 13148–13154;
- 13bY. Zhang, W. Q. Liao, D. W. Fu, H. Y. Ye, Z. N. Chen, R. G. Xiong, J. Am. Chem. Soc. 2015, 137, 4928–4931;
- 13cY. Zhang, W. Q. Liao, D. W. Fu, H. Y. Ye, C. M. Liu, Z. N. Chen, R. G. Xiong, Adv. Mater. 2015, 27, 3942–3946.
- 14
- 14aY. Han, Y. Dong, H. Gu, T. Cheng, Y. Xie, Y. Lin, G. Xing, J. Yin, B.-B. Cui, Small Structures 2022, 3, 2200110;
- 14bB. Zhou, D. Yan, Angew. Chem. Int. Ed. 2019, 58, 15128–15135;
- 14cB. Zhou, D. Yan, Adv. Funct. Mater. 2023, 33, 2300735.
- 15
- 15aC. Ji, S. Wang, L. Li, Z. Sun, M. Hong, J. Luo, Adv. Funct. Mater. 2019, 29, 1805038;
- 15bY. K. Li, Y. Y. Lai, T. T. Ying, D. C. Han, Y. H. Tan, Y. Z. Tang, P. K. Du, H. Zhang, Chem. Sci. 2021, 12, 13061–13067;
- 15cC. Shi, L. Ye, Z. X. Gong, J. J. Ma, Q. W. Wang, J. Y. Jiang, M. M. Hua, C. F. Wang, H. Yu, Y. Zhang, H. Y. Ye, J. Am. Chem. Soc. 2020, 142, 545–551;
- 15dK. Yang, C. S. Yang, X. X. Dong, Y. H. Tan, Y. Z. Tang, W. J. Wei, Chem. Eur. J. 2020, 26, 5887–5892;
- 15eJ.-X. Gao, W.-Y. Zhang, Z.-G. Wu, Y.-X. Zheng, D.-W. Fu, J. Am. Chem. Soc. 2020, 142, 4756–4761.
- 16P. F. Li, W. Q. Liao, Y. Y. Tang, H. Y. Ye, Y. Zhang, R. G. Xiong, J. Am. Chem. Soc. 2017, 139, 8752–8757.
- 17J. J. Lander, Acta Crystallogr. 1951, 4, 148–156.
- 18K. Aizu, Phys. Rev. B 1970, 2, 754–772.
- 19D. W. Davidson, R. H. Cole, J. Chem. Phys. 2004, 19, 1484–1490.
- 20
- 20aR. Resta, D. Vanderbilt, in Physics of Ferroelectrics: A Modern Perspective, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 31–68;
- 20bN. A. Spaldin, J. Solid State Chem. 2012, 195, 2–10;
- 20cP.-F. Li, W.-Q. Liao, Y.-Y. Tang, W. Qiao, D. Zhao, Y. Ai, Y.-F. Yao, R.-G. Xiong, Proc. Nat. Acad. Sci. 2019, 116, 5878.
- 21H.-Y. Zhang, X.-G. Chen, Y.-Y. Tang, W.-Q. Liao, F.-F. Di, X. Mu, H. Peng, R.-G. Xiong, Chem. Soc. Rev. 2021, 50, 8248–8278.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.