Enhancing Plasmonic Hot Electron Energy on Ag Surface by Amine Coordination
Ying Wang
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorYonglong Li
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorXian Yang
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorTeng Wang
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorXiaomeng Du
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorAonan Zhu
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorDr. Weiwei Xie
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Xie
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorYing Wang
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorYonglong Li
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorXian Yang
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorTeng Wang
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorXiaomeng Du
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorAonan Zhu
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorDr. Weiwei Xie
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Xie
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorAbstract
Plasmonic catalysis has emerged as a promising approach to solar-chemical energy conversion. Notably, hot carriers play a decisive role in plasmonic catalysis since only when their energy matches with the LUMO or HOMO energy of the reactant molecule, can the reaction be activated. However, the hot carrier energy depends on the intrinsic physicochemical properties of the plasmonic metal substrate and the interaction with incident light. Tuning the hot carrier energy is of great significance for plasmonic catalysis but remains challenging. Here, we demonstrate that the energy of hot electrons can be significantly elevated to an unprecedented level through the coordination of amines on Ag surface. The bonding of amines and Ag reduces the work function of nanoparticles, leading to the increase of hot electron energy by 0.4 eV. This enhancement of energy promotes the cleavage of C−X (X=Cl, F) bonds upon excitation by visible light. This study provides new insights for promoting plasmonic charge transfer and enhancing the photocatalytic performance of plasmon-mediated systems.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202318817-sup-0001-misc_information.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Christopher, H. Xin, S. Linic, Nat. Chem. 2011, 3, 467–472.
- 2C. Zhan, M. Moskovits, Z. Q. Tian, Matter 2020, 3, 42–56.
- 3E. Cortés, R. Grzeschik, S. A. Maier, S. Schlücker, Nat. Chem. Rev. 2022, 6, 259–274.
- 4A. Gellé, T. Jin, L. de la Garza, G. D. Price, L. V. Besteiro, A. Moores, Chem. Rev. 2020, 120, 986–1041.
- 5G. Joshi, A. Q. Mir, A. Layek, A. M. Ali, S. K. Aziz, S. Khatua, A. Dutta, ACS Catal. 2022, 12, 1052–1067.
- 6M. J. Landry, A. Gellé, B. Y. Meng, C. J. Barrett, A. Moores, ACS Catal. 2017, 7, 6128–6133.
- 7Y. Wang, J. Zhang, W. Liang, H. Yang, T. Guan, B. Zhao, Y. Sun, L. Chi, L. Jiang, CCS Chem. 2022, 4, 1153–1168.
- 8D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, N. J. Halas, Proc. Natl. Acad. Sci. USA 2016, 113, 8916–8920.
- 9S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, N. J. Halas, Nano Lett. 2013, 13, 240–247.
- 10S. Bai, L. Yang, C. L. Wang, Y. Lin, J. L. Lu, J. Jiang, Y. J. Xiong, Angew. Chem. Int. Ed. 2015, 54, 14810–14814.
- 11H. Ren, Yang, J. L. Yang, W. M. Yang, H. L. Zhong, J. S. Lin, P. M. Sun, L. Radjen-ovic, H. Zhang, J. Xu, Z. Q. Tian, J. F. Li, ACS Materials Lett. 2021, 3, 69–76.
- 12B. B. Zhou, W. H. Ou, J. D. Shen, C. H. Zhao, J. Zhong, P. Du, H. D. Bian, P. Li, L. B. Yang, J. Lu, Y. Y. Li, ACS Catal. 2021, 11, 14898–14905.
- 13E. Cortés, W. Xie, J. Cambiasso, A. S. Jermyn, R. Sundararaman, P. Narang, S. Schlücker, S. A. Maier, Nat. Commun. 2017, 8, 14880.
- 14W. Xie, S. Schlücker, Nat. Commun. 2015, 6, 7570–7575.
- 15H. Zhang, J. Wei, X. G. Zhang, Y. J. Zhang, P. M. Radjenovica, D. Y. Wu, F. Pan, Z. Q. Tian, J. F. Li, Chem 2020, 6, 689–702.
- 16S. Ezendam, M. Herran, L. Nan, C. Gruber, Y. Kang, F. Gröbmeyer, R. Lin, J. Gargiulo, A. Sousa-Castillo, E. Cortés, ACS Energy Lett. 2022, 7, 778–815.
- 17H. Robatjazi, H. Zhao, D. F. Swearer, N. J. Hogan, L. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, N. J. Halas, Nat. Commun. 2017, 8, 27.
- 18T. Shao, X. Wang, H. Dong, S. Liu, D. Duan, Y. Li, P. Song, H. Jiang, Z. Hou, C. Gao, Y. Xiong, Adv. Mater. 2022, 34, e2202367.
- 19V. G. Rao, U. Aslam, S. Linic, J. Am. Chem. Soc. 2019, 141, 643–647.
- 20J. Zhou, W. He, H. Liu, C. Z. Huang, ACS Catal. 2022, 12, 847–853.
- 21H. Tang, C. J. Chen, Z. Huang, J. Bright, G. Meng, R. S. Liu, N. Wu, J. Chem. Phys. 2020, 152, 220901.
- 22E. Cortés, L. V. Besteiro, A. Alabastri, A. Baldi, G. Tagliabue, A. Demetriadou, P. Narang, ACS Nano 2020, 14, 16202–16219.
- 23A. Stefancu, S. Lee, L. Zhu, M. Liu, R. C. Lucacel, E. Cortés, N. Leopold, Nano Lett. 2021, 21, 6592–6599.
- 24F. Shao, W. Wang, W. Yang, Z. Yan, Y. Zhan, J. La, A. D. Schlüte, R. Zenobi, Nat. Commun. 2021, 12, 4557–4566.
- 25J. Liu, Z. Y. Cai, W. X. Sun, J. Z. Wang, X. R. Shen, C. Zhan, R. Devasenathipathy, J. Z. Zhou, D. Y. Wu, B. W. Mao, Z. Q. Tian, J. Am. Chem. Soc. 2020, 142, 17489–17498.
- 26D. Parobek, T. Qiao, D. H. Son, J. Chem. Phys. 2019, 151, 120901.
- 27I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. William, K. Bega, A. M. Mora, B. D. Duniet, D. A. Nicewicz, Nature 2020, 580, 76–80.
- 28R. Li, C. C. Zhang, D. Wang, Y. F. Hu, Y. L. Li, W. Xie, Chin. Chem. Lett. 2021, 32, 2846–2850.
- 29J. L. Wang, R. A. Ando, P. H. C. Camargo, ACS Catal. 2014, 4, 3815–3819.
- 30C. C. Zhang, Y. L. Li, A. N. Zhu, L. Yang, X. M. Du, Y. F. Hu, X. Yang, F. Zhang, W. Xie Chin. Chem. Lett. 2022, 34, 107655.
- 31J. Liu, C. C. Zhang, S. X. Zhang, H. J. Yu, W. Xie, Chin. Chem. Lett. 2020, 31, 539–542.
- 32Y. Liu, J. Y. Cai, J. Zhou, Y. Zang, X. Zheng, Z. Zhu, B. Liu, G. Wang, Y. Qian, eScience 2022, 2, 389–398.
- 33Y. Li, Y. Hu, F. Shi, H. Li, W. Xie, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 9049–9053.
- 34S. Jeong, H. Kang, M. G. Cha, S. G. Lee, J. Kim, H. Chang, Y. S. Lee, D. H. Jeong, Chem. Commun. 2019, 55, 2700–2703.
- 35S. Swaminathan, V. G. Rao, J. K. Bera, M. Chandra, Angew. Chem. Int. Ed. 2021, 60, 12532–12538.
- 36Y. Xin, K. Yu, L. Zhang, Y. Yang, H. Yuan, H. Li, L. Wang, J. Zeng, Adv. Mater. 2021, 33, 2008145.
- 37G. Baffou, I. Bordacchini, A. Baldi, R. Quidant, Light-Sci. Appl. 2020, 9, 108.
- 38A. Paladini, D. Catone, P. O'Keeffe, F. Toschi, L. Suber, Plasmonics 2018, 13, 1687–1693.
- 39K. N. Krishnakanth, B. Chandu, M. S. S. Bharathi, S. S. K. Ravi, S. V. Rao, Opt. Mater. 2019, 95, 109239.
- 40C. Xia, P. F. Gao, W. He, Y. Wang, C. H. Li, H. Y. Zou, Y. F. Li, C. Z. Huang, J. Mater. Chem. C 2021, 9, 3108–3114.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.