Efficient Photosynthesis of Hydrogen Peroxide by Cyano-Containing Covalent Organic Frameworks from Water, Air and Sunlight
Yanghui Hou
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorPeng Zhou
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorFuyang Liu
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorYanyu Lu
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorHao Tan
School of Materials Science and Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorZhengmao Li
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorCorresponding Author
Meiping Tong
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorJinren Ni
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorYanghui Hou
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorPeng Zhou
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorFuyang Liu
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorYanyu Lu
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorHao Tan
School of Materials Science and Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorZhengmao Li
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorCorresponding Author
Meiping Tong
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorJinren Ni
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871 P. R. China
The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871 P. R. China
State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorAbstract
The insufficient exciton (e−-h+ pair) separation/transfer and sluggish two-electron water oxidation are two main factors limiting the H2O2 photosynthetic efficiency of covalent organic frameworks (COFs) photocatalysts. Herein, we present an alternative strategy to simultaneously facilitate exciton separation/transfer and reduce the energy barrier of two-electron water oxidation in COFs via a dicyano functionalization. The in situ characterization and theoretical calculations reveal that the dicyano functionalization improves the amount of charge transfer channels between donor and acceptor units from two in COF-0CN without cyano functionalization to three in COF-1CN with mono-cyano functionalization and four in COF-2CN with dicyano functionalization, leading to the highest separation/transfer efficiency in COF-2CN. More importantly, the dicyano group activates the neighbouring C atom to produce the key *OH intermediate for effectively reducing the energy barrier of rate-determining two-electron water oxidation in H2O2 photosynthesis. The simultaneously enhanced exciton separation/transfer and two-electron water oxidation in COF-2CN result in high H2O2 yield (1601 μmol g−1 h−1) from water and oxygen without using sacrificial reagent under visible-light irradiation. COF-2CN can effectively yield H2O2 in water with wide pH range, in different real water samples, in scaled-up reactor under natural sunlight irradiation, and in continuous-flow reactor for consecutively producing H2O2 solution for water decontamination.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request. Deposition numbers 2315992 (for COF-0CN), 2315993 (for COF-1CN), and 2315994 (for COF-2CN) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202318562-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Sun, L. Han, P. Strasser, Chem. Soc. Rev. 2020, 49, 6605–6631;
- 1bZ. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang, Y.-R. Lu, S. Liu, C. Wang, A. Yamakata, C. Su, B. Liu, T. Ohno, Nat. Catal. 2021, 4, 374–384.
- 2C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Science 2019, 366, 226–231.
- 3
- 3aY.-X. Ye, J. Pan, F. Xie, L. Gong, S. Huang, Z. Ke, F. Zhu, J. Xu, G. Ouyang, Proc. Natl. Acad. Sci. USA 2021, 118, e2103964118;
- 3bT. Liu, Z. Pan, K. Kato, J. J. M. Vequizo, R. Yanagi, X. Zheng, W. Yu, A. Yamakata, B. Chen, S. Hu, K. Katayama, C. Chu, Nat. Commun. 2022, 13, 7783.
- 4
- 4aB. He, Z. Wang, P. Xiao, T. Chen, J. Yu, L. Zhang, Adv. Mater. 2022, 34, 2203225;
- 4bT. Liu, Z. Pan, J. J. M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu, K. Domen, Nat. Commun. 2022, 13, 1034.
- 5
- 5aL. Liu, M.-Y. Gao, H. Yang, X. Wang, X. Li, A. I. Cooper, J. Am. Chem. Soc. 2021, 143, 19287–19293;
- 5bZ. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan, Y. Zhu, Energy Environ. Sci. 2018, 11, 2581–2589;
- 5cS. Wu, H. Yu, S. Chen, X. Quan, ACS Catal. 2020, 10, 14380–14389.
- 6
- 6aC. Qin, X. Wu, L. Tang, X. Chen, M. Li, Y. Mou, B. Su, S. Wang, C. Feng, J. Liu, X. Yuan, Y. Zhao, H. Wang, Nat. Commun. 2023, 14, 5238;
- 6bC. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, C. V. Stevens, J. A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas, P. Van Der Voort, J. Am. Chem. Soc. 2020, 142, 20107–20116;
- 6cZ. Yong, T. Ma, Angew. Chem. Int. Ed. 2023, 62, e202308980.
- 7
- 7aY. Mou, X. Wu, C. Qin, J. Chen, Y. Zhao, L. Jiang, C. Zhang, X. Yuan, E. Huixiang Ang, H. Wang, Angew. Chem. Int. Ed. 2023, 62, e202309480;
- 7bH. Yan, M. Shen, Y. Shen, X.-D. Wang, W. Lin, J. Pan, J. He, Y.-X. Ye, X. Yang, F. Zhu, J. Xu, J. He, G. Ouyang, Proc. Natl. Acad. Sci. USA 2022, 119, e2202913119.
- 8
- 8aJ. Chen, D. Yuan, Y. Wang, Adv. Funct. Mater. 2023, 33, 2304071;
- 8bM. Zhang, M. Lu, Z.-L. Lang, J. Liu, M. Liu, J.-N. Chang, L.-Y. Li, L.-J. Shang, M. Wang, S.-L. Li, Y.-Q. Lan, Angew. Chem. Int. Ed. 2020, 59, 6500–6506.
- 9J.-N. Chang, Q. Li, J.-W. Shi, M. Zhang, L. Zhang, S. Li, Y. Chen, S.-L. Li, Y.-Q. Lan, Angew. Chem. Int. Ed. 2023, 62, e202218868.
- 10C. Liu, H. Li, F. Liu, J. Chen, Z. Yu, Z. Yuan, C. Wang, H. Zheng, G. Henkelman, L. Wei, Y. Chen, J. Am. Chem. Soc. 2020, 142, 21861–21871.
- 11C. Li, J. Yang, P. Pachfule, S. Li, M.-Y. Ye, J. Schmidt, A. Thomas, Nat. Commun. 2020, 11, 4712.
- 12
- 12aX. Chi, Q. Chen, Z.-A. Lan, X. Zhang, X. Chen, X. Wang, Chem. Eur. J. 2023, 29, e202202734;
- 12bZ. Fang, Z. Jin, S. Tang, P. Li, P. Wu, G. Yu, ACS Nano 2022, 16, 1072–1081.
- 13Z. Sun, Y. Wang, L. Zhang, H. Wu, Y. Jin, Y. Li, Y. Shi, T. Zhu, H. Mao, J. Liu, C. Xiao, S. Ding, Adv. Funct. Mater. 2020, 30, 1910482.
- 14L. Xu, L. Li, L. Yu, J. C. Yu, Chem. Eng. J. 2022, 431, 134241.
- 15C. Li, J. Liu, H. Li, K. Wu, J. Wang, Q. Yang, Nat. Commun. 2022, 13, 2357.
- 16C. Yao, Y. Yang, L. Li, M. Bo, J. Zhang, C. Peng, Z. Huang, J. Wang, J. Phys. Chem. C 2020, 124, 23059–23068.
- 17X. Chi, Z.-A. Lan, Q. Chen, X. Zhang, X. Chen, G. Zhang, X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202303785.
- 18K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu, X. Li, J. Mater. Chem. A 2018, 6, 13110–13122.
- 19
- 19aY. Shi, Z. Yang, L. Shi, H. Li, X. Liu, X. Zhang, J. Cheng, C. Liang, S. Cao, F. Guo, X. Liu, Z. Ai, L. Zhang, Environ. Sci. Technol. 2022, 56, 14478–14486;
- 19bL. Chen, J. Duan, P. Du, W. Sun, B. Lai, W. Liu, Water Res. 2022, 221, 118747.
- 20W. Zhang, Z. Deng, J. Deng, C.-T. Au, Y. Liao, H. Yang, Q. Liu, J. Mater. Chem. A 2022, 10, 22419–22427.
- 21
- 21aF. Liu, Y. He, X. Liu, Z. Wang, H.-L. Liu, X. Zhu, C.-C. Hou, Y. Weng, Q. Zhang, Y. Chen, ACS Catal. 2022, 12, 9494–9502;
- 21bL. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 2022, 144, 17097–17109.
- 22X. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo, H.-L. Jiang, Adv. Mater. 2018, 30, 1705112.
- 23Z. Wang, T. Hisatomi, R. Li, K. Sayama, G. Liu, K. Domen, C. Li, L. Wang, Joule 2021, 5, 344–359.
- 24Q. Liao, Q. Sun, H. Xu, Y. Wang, Y. Xu, Z. Li, J. Hu, D. Wang, H. Li, K. Xi, Angew. Chem. Int. Ed. 2023, 62, e202310556.
- 25Y. Kondo, K. Honda, Y. Kuwahara, K. Mori, H. Kobayashi, H. Yamashita, ACS Catal. 2022, 12, 14825–14835.
- 26Q. Zhi, W. Liu, R. Jiang, X. Zhan, Y. Jin, X. Chen, X. Yang, K. Wang, W. Cao, D. Qi, J. Jiang, J. Am. Chem. Soc. 2022, 144, 21328–21336.
- 27L. Wang, B. Li, D. D. Dionysiou, B. Chen, J. Yang, J. Li, Environ. Sci. Technol. 2022, 56, 3386–3396.
- 28M. Dunwell, Y. Yan, B. Xu, ACS Catal. 2017, 7, 5410–5419.
- 29F. Liu, P. Zhou, Y. Hou, H. Tan, Y. Liang, J. Liang, Q. Zhang, S. Guo, M. Tong, J. Ni, Nat. Commun. 2023, 14, 4344.
- 30
- 30aY. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 2023, 62, e202305355;
- 30bC. Chu, D. Yao, Z. Chen, X. Liu, Q. Huang, Q. Li, S. Mao, Small 2023, 19, 2303796.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.