Enzyme-Activatable Near-Infrared Photosensitizer with High Enrichment in Tumor Cells Based on a Multi-Effect Design
Dr. Yuyao Li
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorChaoying Zhang
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorQingyi Wu
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorYan Peng
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorYiru Ding
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorDr. Zhengwei Zhang
Department of nuclear medicine & PET center, Huashan Hospital, Fudan University, Shanghai, 200235 China
Search for more papers by this authorProf. Dr. Xiaoyong Xu
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hexin Xie
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorDr. Yuyao Li
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorChaoying Zhang
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorQingyi Wu
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorYan Peng
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorYiru Ding
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorDr. Zhengwei Zhang
Department of nuclear medicine & PET center, Huashan Hospital, Fudan University, Shanghai, 200235 China
Search for more papers by this authorProf. Dr. Xiaoyong Xu
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hexin Xie
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 China
Search for more papers by this authorAbstract
Enzyme-activatable near-infrared (NIR) fluorescent probes and photosensitizers (PSs) have emerged as promising tools for molecular imaging and photodynamic therapy (PDT). However, in living organisms selective retention or even enrichment of these reagents after enzymatic activation at or near sites of interest remains a challenging task. Herein, we integrate non-covalent and covalent retention approaches to introduce a novel “1-to-3” multi-effect strategy—one enzymatic stimulus leads to three types of effects—for the design of an enzyme-activatable NIR probe or PS. Using this strategy, we have constructed an alkaline phosphatase (ALP)-activatable NIR fluorogenic probe and a NIR PS, which proved to be selectively activated by ALP to switch on NIR fluorescence or photosensitizing ability, respectively. Additionally, these reagents showed significant enrichment (over 2000-fold) in ALP-overexpressed tumor cells compared to the culture medium, accompanied by massive depletion of intracellular thiols, the major antioxidants in cells. The investigation of this ALP-activatable NIR PS in an in vivo PDT model resulted in complete suppression of HeLa tumors and full recovery of all tested mice. Encouragingly, even a single administration of this NIR PS was sufficient to completely suppress tumors in mice, demonstrating the high potential of this strategy in biomedical applications.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202317773-sup-0001-misc_information.pdf6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380–387;
- 1bT. C. Pham, V. N. Nguyen, Y. H. Choi, S. Y. Lee, J. Y. Yoon, Chem. Rev. 2021, 121, 13454–13619;
- 1cH. H. Han, H. M. Wang, P. Jangili, M. L. Li, L. L. Wu, Y. Zang, A. C. Sedgwick, J. Li, X. P. He, T. D. James, J. S. Kim, Chem. Soc. Rev. 2023, 52, 879–920.
- 2K. Li, S. Xu, M. Y. Xiong, S. Y. Huan, L. Yuan, X. B. Zhang, Chem. Soc. Rev. 2021, 50, 11766–11784.
- 3
- 3aH. Liu, L. Chen, C. Xu, Z. Li, H. Zhang, X. Zhang, W. Tan, Chem. Soc. Rev. 2018, 47, 7140–7180;
- 3bK. Singh, A. M. Rotaru, A. A. Beharry, ACS Chem. Biol. 2018, 13, 1785–1798;
- 3cJ. Zhang, X. Chai, X. P. He, H. J. Kim, J. Yoon, H. Tian, Chem. Soc. Rev. 2019, 48, 683–722.
- 4
- 4aX. Wu, R. Wang, N. Kwon, H. Ma, J. Yoon, Chem. Soc. Rev. 2022, 51, 450–463;
- 4bA. Razgulin, N. Ma, J. Rao, Chem. Soc. Rev. 2011, 40, 4186–4216.
- 5R. Yan, D. Ye, Sci. Bull. 2016, 61, 1672–1679.
- 6
- 6aG. Liang, H. Ren, J. Rao, Nat. Chem. 2010, 2, 54–60;
- 6bD. Ye, G. Liang, M. L. Ma, J. Rao, Angew. Chem. Int. Ed. 2011, 50, 2275–2279;
- 6cD. J. Ye, A. J. Shuhendler, L. N. Cui, L. Tong, S. S. Tee, G. Tikhomirov, D. W. Felsher, J. H. Rao, Nat. Chem. 2014, 6, 519–526.
- 7
- 7aZ. M. Yang, H. W. Gu, D. G. Fu, P. Gao, J. K. Lam, B. Xu, Adv. Mater. 2004, 16, 1440–1444;
- 7bB. J. Kim, B. Xu, Bioconjugate Chem. 2020, 31, 492–500.
- 8R. Yan, Y. Hu, F. Liu, S. Wei, D. Fang, A. J. Shuhendler, H. Liu, H.-Y. Chen, D. Ye, J. Am. Chem. Soc. 2019, 141, 10331–10341.
- 9
- 9aJ. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740–1741;
- 9bY. N. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388;
- 9cJ. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940.
- 10H. Li, Q. Yao, F. Xu, Y. Li, D. Kim, J. Chung, G. Baek, X. Wu, P. F. Hillman, E. Y. Lee, H. Ge, J. Fan, J. Wang, S. J. Nam, X. Peng, J. Yoon, Angew. Chem. Int. Ed. 2020, 59, 10186–10195.
- 11K. Li, Y. Lyu, Y. Huang, S. Xu, H.-W. Liu, L. Chen, T.-B. Ren, M. Xiong, S. Huan, L. Yuan, X.-B. Zhang, W. Tan, Proc. Natl. Acad. Sci. USA 2021, 118, e2018033118.
- 12J. Fang, Y. L. Feng, Y. Q. Zhang, A. N. Wang, J. C. Li, C. X. Cui, Y. R. Guo, J. F. Zhu, Z. Z. Lv, Z. S. Zhao, C. J. Xu, H. B. Shi, J. Am. Chem. Soc. 2022, 144, 23061–23072.
- 13
- 13aS. Halazy, V. Berges, A. Ehrhard, C. Danzin, Bioorg. Chem. 1990, 18, 330–344;
- 13bD. Kern, A. Kormos, Chemosensors 2023, 11, 155;
- 13cS. E. Rokita, Quinone Methides, Wiley, Hoboken 2009.
10.1002/9780470452882 Google Scholar
- 14
- 14aY. Li, H. Song, C. Xue, Z. Fang, L. Xiong, H. Xie, Chem. Sci. 2020, 11, 5889–5894;
- 14bY. Li, C. Xue, Z. Fang, W. Xu, H. Xie, Anal. Chem. 2020, 92, 15017–15024.
- 15
- 15aR. Weissleder, Nat. Biotechnol. 2001, 19, 316–317;
- 15bS. A. Hilderbrand, R. Weissleder, Curr. Opin. Chem. Biol. 2010, 14, 71–79;
- 15cS. P. Z. Guo, J. Yoon, I. Shin, Chem. Soc. Rev. 2014, 43, 16–29;
- 15dH. Li, Y. J. Kim, H. Jung, J. Y. Hyun, I. Shin, Chem. Soc. Rev. 2022, 51, 8957–9008;
- 15eY. S. Liu, Y. Li, S. Koo, Y. Sun, Y. X. Liu, X. Liu, Y. N. Pan, Z. Y. Zhang, M. X. Du, S. Y. Lu, X. Qiao, J. F. Gao, X. B. Wang, Z. X. Deng, X. L. Meng, Y. L. Xiao, J. S. Kim, X. C. Hong, Chem. Rev. 2022, 122, 209–268.
- 16
- 16aU. Sharma, D. Pal, R. Prasad, Indian J. Clin. Biochem. 2014, 29, 269–278;
- 16bJ. E. Coleman, Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441–483.
- 17
- 17aW. H. Fishman, N. R. Inglis, S. Green, C. L. Anstiss, N. K. Gosh, A. E. Reif, R. Rustigian, M. J. Krant, L. L. Stolbach, Nature 1968, 219, 697–699;
- 17bJ. L. Millán, Clin. Chim. Acta 1992, 209, 123–129;
- 17cJ. L. Millán, W. H. Fishman, Crit. Rev. Clin. Lab. Sci. 1995, 32, 1–39.
- 18
- 18aL. Yuan, W. Lin, S. Zhao, W. Gao, B. Chen, L. He, S. Zhu, J. Am. Chem. Soc. 2012, 134, 13510–13523;
- 18bH. Chen, B. Dong, Y. Tang, W. Lin, Acc. Chem. Res. 2017, 50, 1410–1422;
- 18cH. Li, H. Kim, F. Xu, J. Han, Q. Yao, J. Wang, K. Pu, X. Peng, J. Yoon, Chem. Soc. Rev. 2022, 51, 1795–1835.
- 19C. W. Lin, M. Sasaki, M. L. Orcutt, H. Miyayama, R. M. Singer, J. Histochem. Cytochem. 1976, 24, 659–667.
- 20Y. Zhao, Q. Hu, F. Cheng, N. Su, A. Wang, Y. Zou, H. Hu, X. Chen, H. M. Zhou, X. Huang, K. Yang, Q. Zhu, X. Wang, J. Yi, L. Zhu, X. Qian, L. Chen, Y. Tang, J. Loscalzo, Y. Yang, Cell Metab. 2015, 21, 777–789.
- 21
- 21aJ. Atchison, S. Kamila, H. Nesbitt, K. A. Logan, D. M. Nicholas, C. Fowley, J. Davis, B. Callan, A. P. McHale, J. F. Callan, Chem. Commun. 2017, 53, 2009–2012;
- 21bF. Xu, H. D. Li, Q. C. Yao, H. Y. Ge, J. L. Fan, W. Sun, J. Y. Wang, X. J. Peng, Chem. Sci. 2019, 10, 10586–10594;
- 21cS. Thavornpradit, S. M. Usama, G. K. Park, J. Dinh, H. S. Choi, K. Burgess, ACS Med. Chem. Lett. 2022, 13, 470–474.
- 22T. Entradas, S. Waldron, M. Volk, J. Photochem. Photobiol. B 2020, 204, 111787.
- 23H. J. Forman, H. Zhang, A. Rinna, Mol. Aspects Med. 2009, 30, 1–12.
- 24
- 24aJ. Noh, B. Kwon, E. Han, M. Park, W. Yang, W. Cho, W. Yoo, G. Khang, D. Lee, Nat. Commun. 2015, 6, 6907;
- 24bJ. Li, A. Dirisala, Z. Ge, Y. Wang, W. Yin, W. Ke, K. Toh, J. Xie, Y. Matsumoto, Y. Anraku, K. Osada, K. Kataoka, Angew. Chem. Int. Ed. 2017, 56, 14025–14030;
- 24cB. Niu, K. Liao, Y. Zhou, T. Wen, G. Quan, X. Pan, C. Wu, Biomaterials 2021, 277, 121110.
- 25L. Zhao, C. D. Kroenke, J. Song, D. Piwnica-Worms, J. J. H. Ackerman, J. J. Neil, NMR Biomed. 2008, 21, 159–164.
- 26
- 26aW. Yin, J. Li, W. Ke, Z. Zha, Z. Ge, ACS Appl. Mater. Interfaces 2017, 9, 29538–29546;
- 26bC. Q. Luo, Y. X. Zhou, T. J. Zhou, L. Xing, P. F. Cui, M. Sun, L. Jin, N. Lu, H. L. Jiang, J. Controlled Release 2018, 274, 56–68.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.