Tapcin, an In Vivo Active Dual Topoisomerase I/II Inhibitor Discovered by Synthetic Bioinformatic Natural Product (Syn-BNP)-Coupled Metagenomics
Dr. Zongqiang Wang
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Amanda Kasper
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Mai Takahashi
Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Adrian Morales Amador
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Abir Bhattacharjee
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Jingbo Kan
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Yozen Hernandez
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorMelinda Ternei
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorCorresponding Author
Prof. Sean F. Brady
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Zongqiang Wang
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Amanda Kasper
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Mai Takahashi
Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Adrian Morales Amador
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Abir Bhattacharjee
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Jingbo Kan
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorDr. Yozen Hernandez
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorMelinda Ternei
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorCorresponding Author
Prof. Sean F. Brady
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
Search for more papers by this authorAbstract
DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in ncbi at https://www.ncbi.nlm.nih.gov, reference number 950198.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202317187-sup-0001-misc_information.pdf4.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Topcu, J. Clin. Pharm. Ther. 2001, 26, 405–416.
- 2J. L. Delgado, C. M. Hsieh, N. L. Chan, H. Hiasa, Biochem. J. 2018, 475, 373–398.
- 3J. L. Nitiss, Nat. Rev. Cancer 2009, 9, 338–350.
- 4Y. Pommier, Nat. Rev. Cancer 2006, 6, 789–802.
- 5R. N. Ganapathi, M. K. Ganapathi, Front. Pharmacol. 2013, 4, 89.
- 6Z. Skok, N. Zidar, D. Kikelj, J. Ilas, J. Med. Chem. 2020, 63, 884–904.
- 7W. A. Denny, B. C. Baguley, Curr. Top. Med. Chem. 2003, 3, 339–353.
- 8R. van Gijn, W. W. T. Huinink, S. Rodenhuis, J. B. Vermorken, O. van Tellingen, H. Rosing, L. J. C. van Warmerdam, J. H. Beijnen, Anti-Cancer Drugs 1999, 10, 17–23.
- 9R. B. Ewesuedo, L. Iyer, S. Das, A. Koenig, S. Mani, N. J. Vogelzang, R. L. Schilsky, W. Brenckman, M. J. Ratain, J. Clin. Oncol. 2001, 19, 2084–2090.
- 10S. Salerno, F. Da Settimo, S. Taliani, F. Simorini, C. La Motta, G. Fornaciari, A. M. Marini, Curr. Med. Chem. 2010, 17, 4270–4290.
- 11S. Kummar, M. E. Gutierrez, L. W. Anderson, R. W. Klecker, A. Chen, A. J. Murgo, J. H. Doroshow, J. M. Collins, Cancer Chemother. Pharmacol. 2013, 72, 917–923.
- 12Z. Wang, N. Forelli, Y. Hernandez, M. Ternei, S. F. Brady, Nat. Commun. 2022, 13, 842.
- 13J. Chu, X. Vila-Farres, D. Inoyama, M. Ternei, L. J. Cohen, E. A. Gordon, B. V. Reddy, Z. Charlop-Powers, H. A. Zebroski, R. Gallardo-Macias, M. Jaskowski, S. Satish, S. Park, D. S. Perlin, J. S. Freundlich, S. F. Brady, Nat. Chem. Biol. 2016, 12, 1004–1006.
- 14J. Chu, B. Koirala, N. Forelli, X. Vila-Farres, M. A. Ternei, T. Ali, D. A. Colosimo, S. F. Brady, J. Am. Chem. Soc. 2020, 142, 14158–14168.
- 15R. Daniel, Curr. Opin. Biotechnol. 2004, 15, 199–204.
- 16Z. Charlop-Powers, A. Milshteyn, S. F. Brady, Curr. Opin. Microbiol. 2014, 19, 70–75.
- 17J. Piel, Annu. Rev. Microbiol. 2011, 65, 431–453.
- 18S. F. Brady, Nat. Protoc. 2007, 2, 1297–1305.
- 19S. Cociancich, A. Pesic, D. Petras, S. Uhlmann, J. Kretz, V. Schubert, L. Vieweg, S. Duplan, M. Marguerettaz, J. Noell, I. Pieretti, M. Hugelland, S. Kemper, A. Mainz, P. Rott, M. Royer, R. D. Sussmuth, Nat. Chem. Biol. 2015, 11, 195–197.
- 20S. Baumann, J. Herrmann, R. Raju, H. Steinmetz, K. I. Mohr, S. Huttel, K. Harmrolfs, M. Stadler, R. Muller, Angew. Chem. Int. Ed. Engl. 2014, 53, 14605–14609.
- 21N. J. Hillson, C. J. Balibar, C. T. Walsh, Biochemistry 2004, 43, 11344–11351.
- 22L. Du, C. Sanchez, M. Chen, D. J. Edwards, B. Shen, Chem. Biol. 2000, 7, 623–642.
- 23N. A. Moss, T. Leão, M. R. Rankin, T. M. McCullough, P. Qu, A. Korobeynikov, J. L. Smith, L. Gerwick, W. H. Gerwick, ACS Chem. Biol. 2018, 13, 3385–3395.
- 24T. Stachelhaus, M. A. Mootz, H. Fau-Marahiel, M. A. Marahiel, Chem. Biol. 1999, 6, 493–505.
- 25R. J. Billedeau, R. K. Kondru, F. J. Lopez-Tapia, Y. Lou, T. D. Owens, Y. Qian, S.-S. So, K. C. Thakkar, J. Wanner, PCT Int. Appl. WO2012156334 2012.
- 26M. G. Saulnier, U. Velaparthi, K. Zimmermann, Prog. Heterocycl. Chem. 2005, 16, 228–271.
10.1016/S0959-6380(05)80051-0 Google Scholar
- 27J. Ruiz-Rodriguez, M. Miguel, S. Preciado, G. A. Acosta, J. Adan, A. Bidon-Chanal, F. J. Luque, F. Mitjans, R. Lavilla, F. Albericio, Chem. Sci. 2014, 5, 3929–3935.
- 28A. L. Pietkiewicz, Y. Q. Zhang, M. N. Rahimi, M. Stramandinoli, M. Teusner, S. R. McAlpine, ACS Med. Chem. Lett. 2017, 8, 401–406.
- 29G. Testolin, K. Cirnski, K. Rox, H. Prochnow, V. Fetz, C. Grandclaudon, T. Mollner, A. Baiyoumy, A. Ritter, C. Leitner, J. Krull, J. van den Heuvel, A. Vassort, S. Sordello, M. M. Hamed, W. A. M. Elgaher, J. Herrmann, R. W. Hartmann, R. Muller, M. Bronstrup, Chem. Sci. 2019, 11, 1316–1334.
- 30R. Zhang, M. A. Kennedy, Biomol. Eng. 2021, 11, 638.
- 31M. W. Vetting, S. S. Hegde, J. E. Fajardo, A. Fiser, S. L. Roderick, H. E. Takiff, J. S. Blanchard, J. S. Blanchard, Biochemistry 2006, 45, 1–10.
- 32M. W. Vetting, S. S. Hegde, Y. Zhang, J. S. Blanchard, Acta Crystallogr. Sect. F 2011, 67, 296–302.
- 33F. Panter, D. Krug, S. Baumann, R. Müller, Chem. Sci. 2018, 9, 4898–4908.
- 34Q. Mi, J. M. Pezzuto, N. R. Farnsworth, M. C. Wani, A. D. Kinghorn, S. M. Swanson, J. Nat. Prod. 2009, 72, 573–580.
- 35M. G. Hollingshead, M. C. Alley, R. F. Camalier, B. J. Abbott, J. G. Mayo, L. Malspeis, M. R. Grever, Life Sci. 1995, 57, 131–141.
- 36J. Fogh, J. M. Fogh, T. Orfeo, J. Natl. Cancer Inst. 1977, 59, 221–226.
- 37K. Fujita, Y. Kubota, H. Ishida, Y. Sasaki, World J. Gastroenterol. 2015, 21, 12234–12248.
- 38E. Riego, D. Hernández, F. Albericio, M. Álvarez, Synthesis 2005, 1907–1922.
- 39X. Zhou, H. Huang, Y. Chen, J. Tan, Y. Song, J. Zou, X. Tian, Y. Hua, J. Ju, J. Nat. Prod. 2012, 75, 2251–2255.
- 40Q. Shen, H. Zhou, G. Dai, G. Zhong, L. Huo, A. Li, Y. Liu, M. Yang, V. Ravichandran, Z. Zheng, Y.-J. Tang, N. Jiao, Y. Zhang, X. Bian, ACS Catal. 2022, 12, 3371–3381.
- 41R. S. Roy, A. M. Gehring, J. C. Milne, P. J. Belshaw, C. T. Walsh, Nat. Prod. Rep. 1999, 16, 249–263.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.